

HyperNetX (HNX)

[image: _images/hnxbasics.png]
HNX [https://github.com/pnnl/HyperNetX] is a Python library for hypergraphs, the natural models for multi-dimensional network data.

To get started, try the interactive COLAB tutorials. For a primer on hypergraphs, try this gentle introduction. To see hypergraphs at work in cutting-edge research, see our list of recent publications.

Why hypergraphs?

Like graphs, hypergraphs capture important information about networks and relationships. But hypergraphs do more – they model multi-way relationships, where ordinary graphs only capture two-way relationships. This library serves as a repository of methods and algorithms that have proven useful over years of exploration into what hypergraphs can tell us.

As both vertex adjacency and edge
incidence are generalized to be quantities,
hypergraph paths and walks have both length and width because of these multiway connections.
Most graph metrics have natural generalizations to hypergraphs, but since
hypergraphs are basically set systems, they also admit to the powerful tools of algebraic topology,
including simplicial complexes and simplicial homology, to study their structure.

Our community

We have a growing community of users and contributors. For the latest software updates, and to learn about the development team, see the library overview. Have ideas to share? We’d love to hear from you! Our orientation for contributors [https://github.com/pnnl/HyperNetX/blob/master/CONTRIBUTING.md] can help you get started.

Our values

Our shared values as software developers guide us in our day-to-day interactions and decision-making. Our open source projects are no exception. Trust, respect, collaboration and transparency are core values we believe should live and breathe within our projects. Our community welcomes participants from around the world with different experiences, unique perspectives, and great ideas to share. See our code of conduct [https://github.com/pnnl/HyperNetX/blob/master/CODE_OF_CONDUCT.md] to learn more.

Contact us

	Questions and comments are welcome! Contact us at
	hypernetx@pnnl.gov

Contents

	Home

	Overview

	Installing HyperNetX

	Glossary

	HyperNetX Packages

	A Gentle Introduction to Hypergraph Mathematics

	Hypergraph Constructors

	Visualization Widget

	Algorithms: Modularity and Clustering

	Publications

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

[image: ../_images/harrypotter_basic_hyp.png]

HyperNetX

The HyperNetX library provides classes and methods for the analysis
and visualization of complex network data modeled as hypergraphs.
The library generalizes traditional graph metrics.

HypernetX was developed by the Pacific Northwest National Laboratory for the
Hypernets project as part of its High Performance Data Analytics (HPDA) program.
PNNL is operated by Battelle Memorial Institute under Contract DE-ACO5-76RL01830.

	Principal Developer and Designer: Brenda Praggastis

	Development Team: Audun Myers, Mark Bonicillo

	Visualization: Dustin Arendt, Ji Young Yun

	Principal Investigator: Cliff Joslyn

	Program Manager: Brian Kritzstein

	Principal Contributors (Design, Theory, Code): Sinan Aksoy, Dustin Arendt, Mark Bonicillo, Helen Jenne, Cliff Joslyn, Nicholas Landry, Audun Myers, Christopher Potvin, Brenda Praggastis, Emilie Purvine, Greg Roek, Mirah Shi, Francois Theberge, Ji Young Yun

The code in this repository is intended to support researchers modeling data
as hypergraphs. We have a growing community of users and contributors.
Documentation is available at: https://pnnl.github.io/HyperNetX

For questions and comments contact the developers directly at: hypernetx@pnnl.gov

New Features in Version 2.0

HNX 2.0 now accepts metadata as core attributes of the edges and nodes of a
hypergraph. While the library continues to accept lists, dictionaries and
dataframes as basic inputs for hypergraph constructions, both cell
properties and edge and node properties can now be easily added for
retrieval as object attributes.

The core library has been rebuilt to take advantage of the flexibility and speed of Pandas Dataframes.
Dataframes offer the ability to store and easily access hypergraph metadata. Metadata can be used for filtering objects, and characterize their
distributions by their attributes.

Version 2.0 is not backwards compatible. Objects constructed using version
1.x can be imported from their incidence dictionaries.

What’s New

	The Hypergraph constructor now accepts nested dictionaries with incidence cell properties, pandas.DataFrames, and 2-column Numpy arrays.

	Additional constructors accept incidence matrices and incidence dataframes.

	Hypergraph constructors accept cell, edge, and node metadata.

	Metadata available as attributes on the cells, edges, and nodes.

	User-defined cell weights and default weights available to incidence matrix.

	Meta data persists with restrictions and removals.

	Meta data persists onto s-linegraphs as node attributes of Networkx graphs.

	New hnxwidget available using pip install hnxwidget.

What’s Changed

	The static and dynamic distinctions no longer exist. All hypergraphs use the same underlying data structure, supported by Pandas dataFrames. All hypergraphs maintain a state_dict to avoid repeating computations.

	Methods for adding nodes and hyperedges are currently not supported.

	The nwhy optimizations are no longer supported.

	Entity and EntitySet classes are being moved to the background. The Hypergraph constructor does not accept either.

COLAB Tutorials

The following tutorials may be run in your browser using Google Colab. Additional tutorials are
available on GitHub [https://github.com/pnnl/HyperNetX].

 [image: Open In Colab]
 Tutorial 1 - HNX Basics

 Installing HyperNetX

Installing HyperNetX

Installation

The recommended installation method for most users is to create a virtual environment
and install HyperNetX from PyPi.

HyperNetX may be cloned or forked from Github [https://github.com/pnnl/HyperNetX].

Prerequisites

HyperNetX officially supports Python 3.8, 3.9, 3.10 and 3.11.

Create a virtual environment

Using Anaconda

>>> conda create -n venv-hnx python=3.8 -y
>>> conda activate venv-hnx

Using venv

>>> python -m venv venv-hnx
>>> source venv-hnx/bin/activate

Using virtualenv

>>> virtualenv venv-hnx
>>> source venv-hnx/bin/activate

For Windows Users

On both Windows PowerShell or Command Prompt, you can use the following command to activate your virtual environment:

>>> .\env-hnx\Scripts\activate

To deactivate your environment, use:

>>> .\env-hnx\Scripts\deactivate

Installing Hypernetx

Regardless of how you install HyperNetX, ensure that your environment is activated and that you are running Python >=3.8.

Installing from PyPi

>>> pip install hypernetx

If you want to use supported applications built upon HyperNetX (e.g. hypernetx.algorithms.hypergraph_modularity or
hypernetx.algorithms.contagion), you can install HyperNetX with those supported applications by using
the following command:

>>> pip install hypernetx[all]

If you are using zsh as your shell, use single quotation marks around the square brackets:

>>> pip install hypernetx'[all]'

Installing from Source

Ensure that you have git installed.

>>> git clone https://github.com/pnnl/HyperNetX.git
>>> cd HyperNetX
>>> make venv
>>> source venv-hnx/bin/activate
>>> pip install .

Post-Installation Actions

Interact with HyperNetX in a REPL

Ensure that your environment is activated and that you run python on your terminal to open a REPL:

>>> import hypernetx as hnx
>>> data = { 0: ('A', 'B'), 1: ('B', 'C'), 2: ('D', 'A', 'E'), 3: ('F', 'G', 'H', 'D') }
>>> H = hnx.Hypergraph(data)
>>> list(H.nodes)
['G', 'F', 'D', 'A', 'B', 'H', 'C', 'E']
>>> list(H.edges)
[0, 1, 2, 3]
>>> H.shape
(8, 4)

Other Actions if installed from source

If you have installed HyperNetX from source, you can perform additional actions such as viewing the provided Jupyter notebooks
or building the documentation locally.

Ensure that you have activated your virtual environment and are at the root of the source directory before running any of the following commands:

Viewing jupyter notebooks

The following command will automatically open the notebooks in a browser.

>>> make tutorial-deps
>>> make tutorials

Building documentation

The following commands will build and open a local version of the documentation in a browser:

>>> make docs-deps
>>> cd docs
>>> make html
>>> open build/index.html

 Glossary of HNX terms

Glossary of HNX terms

The HNX library centers around the idea of a hypergraph. This glossary provides a few key terms and definitions.

	degree
	Given a hypergraph (Nodes, Edges, Incidence), the degree of a node in Nodes is the number of edges in Edges to which the node is incident.
See also: s-degree

	dual
	The dual of a hypergraph (Nodes, Edges, Incidence) switches the roles of Nodes and Edges. More precisely, it is the hypergraph (Edges, Nodes, Incidence’), where Incidence’ is the function that assigns Incidence(n,e) to each pair (e,n). The incidence matrix of the dual hypergraph is the transpose of the incidence matrix of (Nodes, Edges, Incidence).

	edge nodes (aka edge elements)
	The nodes (or elements) of an edge e in a hypergraph (Nodes, Edges, Incidence) are the nodes that are incident to e.

	Entity and Entity set
	Class in entity.py.
HNX stores many of its data structures inside objects of type Entity. Entities help to insure safe behavior, but their use is primarily technical, not mathematical.

	hypergraph
	The term hypergraph can have many different meanings. In HNX, it means a tuple (Nodes, Edges, Incidence), where Nodes and Edges are sets, and Incidence is a function that assigns a value of True or False to every pair (n,e) in the Cartesian product Nodes x Edges. We call
- Nodes the set of nodes
- Edges the set of edges
- Incidence the incidence function
Note Another term for this type of object is a multihypergraph. The ability to work with multihypergraphs efficiently is a distinguishing feature of HNX!

	incidence
	A node n is incident to an edge e in a hypergraph (Nodes, Edges, Incidence) if Incidence(n,e) = True.
!!! – give the line of code that would allow you to evaluate

	incidence matrix
	A rectangular matrix constructed from a hypergraph (Nodes, Edges, Incidence) where the elements of Nodes index the matrix rows, and the elements of Edges index the matrix columns. Entry (n,e) in the incidence matrix is 1 if n and e are incident, and is 0 otherwise.

	simple hypergraph
	A hypergraph for which no edge is completely contained in another.

	subhypergraph
	A subhypergraph of a hypergraph (Nodes, Edges, Incidence) is a hypergraph (Nodes’, Edges’, Incidence’) such that Nodes’ is a subset of Nodes, Edges’ is a subset of Edges, and every incident pair (n,e) in (Nodes’, Edges’, Incidence’) is also incident in (Nodes, Edges, Incidence)

	subhypergraph induced by a set of nodes
	An induced subhypergraph of a hypergraph (Nodes, Edges, Incidence) is a subhypergraph (Nodes’, Edges’, Incidence’) where a pair (n,e) is incident if and only if it is incident in (Nodes, Edges, Incidence)

	toplex
	A toplex in a hypergraph (Nodes, Edges, Incidence) is an edge e whose node set isn’t properly contained in the node set of any other edge. That is, if f is another edge and ever node incident to e is also incident to f, then the node sets of e and f are identical.

S-line graphs

HNX offers a variety of tool sets for network analysis, including s-line graphs.

	s-adjacency matrix
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, a square matrix where the elements of Nodes index both rows and columns. The matrix can be weighted or unweighted. Entry (i,j) is nonzero if and only if node i and node j are incident to at least s edges in common. If it is nonzero, then it is equal to the number of shared edges (if weighted) or 1 (if unweighted).

	s-edge-adjacency matrix
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, a square matrix where the elements of Edges index both rows and columns. The matrix can be weighted or unweighted. Entry (i,j) is nonzero if and only if edge i and edge j share to at least s nodes, and is equal to the number of shared nodes (if weighted) or 1 (if unweighted).

	s-auxiliary matrix
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, the submatrix of the s-edge-adjacency matrix obtained by restricting to rows and columns corresponding to edges of size at least s.

	s-node-walk
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, a sequence of nodes in Nodes such that each successive pair of nodes share at least s edges in Edges.

	s-edge-walk
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, a sequence of edges in Edges such that each successive pair of edges intersects in at least s nodes in Nodes.

	s-walk
	Either an s-node-walk or an s-edge-walk.

	s-connected component, s-node-connected component
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, an s-connected component is a subhypergraph induced by a subset of Nodes with the property that there exists an s-walk between every pair of nodes in this subset. An s-connected component is the maximal such subset in the sense that it is not properly contained in any other subset satisfying this property.

	s-edge-connected component
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, an s-edge-connected component is a subhypergraph induced by a subset of Edges with the property that there exists an s-edge-walk between every pair of edges in this subset. An s-edge-connected component is the maximal such subset in the sense that it is not properly contained in any other subset satisfying this property.

	s-connected, s-node-connected
	A hypergraph is s-connected if it has one s-connected component.

	s-edge-connected
	A hypergraph is s-edge-connected if it has one s-edge-connected component.

	s-distance
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, the s-distances between two nodes in Nodes is the length of the shortest s-node-walk between them. If no s-node-walks between the pair of nodes exists, the s-distance between them is infinite. The s-distance
between edges is the length of the shortest s-edge-walk between them. If no s-edge-walks between the pair of edges exist, then s-distance between them is infinite.

	s-diameter
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, the s-diameter is the maximum s-Distance over all pairs of nodes in Nodes.

	s-degree
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, the s-degree of a node is the number of edges in Edges of size at least s to which node belongs. See also: degree

	s-edge
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, an s-edge is any edge of size at least s.

	s-linegraph
	For a hypergraph (Nodes, Edges, Incidence) and positive integer s, an s-linegraph is a graph representing
the node to node or edge to edge connections according to the width s of the connections.
The node s-linegraph is a graph on the set Nodes. Two nodes in Nodes are incident in the node s-linegraph if they
share at lease s incident edges in Edges; that is, there are at least s elements of Edges to which they both belong.
The edge s-linegraph is a graph on the set Edges. Two edges in Edges are incident in the edge s-linegraph if they
share at least s incident nodes in Nodes; that is, the edges intersect in at least s nodes in Nodes.

 HyperNetX Packages

HyperNetX Packages

	Hypergraphs
	classes package
	Submodules

	classes.entityset module
	EntitySet
	EntitySet.add()

	EntitySet.add_element()

	EntitySet.add_elements_from()

	EntitySet.assign_cell_properties()

	EntitySet.assign_properties()

	EntitySet.cell_properties

	EntitySet.cell_weights

	EntitySet.children

	EntitySet.collapse_identical_elements()

	EntitySet.data

	EntitySet.dataframe

	EntitySet.dimensions

	EntitySet.dimsize

	EntitySet.elements

	EntitySet.elements_by_column()

	EntitySet.elements_by_level()

	EntitySet.empty

	EntitySet.encode()

	EntitySet.get_cell_properties()

	EntitySet.get_cell_property()

	EntitySet.get_properties()

	EntitySet.get_property()

	EntitySet.incidence_dict

	EntitySet.incidence_matrix()

	EntitySet.index()

	EntitySet.indices()

	EntitySet.is_empty()

	EntitySet.isstatic

	EntitySet.labels

	EntitySet.level()

	EntitySet.memberships

	EntitySet.properties

	EntitySet.remove()

	EntitySet.remove_element()

	EntitySet.remove_elements_from()

	EntitySet.restrict_to()

	EntitySet.restrict_to_indices()

	EntitySet.restrict_to_levels()

	EntitySet.set_cell_property()

	EntitySet.set_property()

	EntitySet.size()

	EntitySet.translate()

	EntitySet.translate_arr()

	EntitySet.uid

	EntitySet.uidset

	EntitySet.uidset_by_column()

	EntitySet.uidset_by_level()

	build_dataframe_from_entity()

	classes.helpers module
	AttrList

	assign_weights()

	create_dataframe()

	create_properties()

	dict_depth()

	encode()

	merge_nested_dicts()

	remove_row_duplicates()

	validate_mapping_for_dataframe()

	classes.hypergraph module
	Hypergraph
	Hypergraph.adjacency_matrix()

	Hypergraph.auxiliary_matrix()

	Hypergraph.bipartite()

	Hypergraph.collapse_edges()

	Hypergraph.collapse_nodes()

	Hypergraph.collapse_nodes_and_edges()

	Hypergraph.component_subgraphs()

	Hypergraph.components()

	Hypergraph.connected_component_subgraphs()

	Hypergraph.connected_components()

	Hypergraph.dataframe

	Hypergraph.degree()

	Hypergraph.diameter()

	Hypergraph.dim()

	Hypergraph.distance()

	Hypergraph.dual()

	Hypergraph.edge_adjacency_matrix()

	Hypergraph.edge_diameter()

	Hypergraph.edge_diameters()

	Hypergraph.edge_distance()

	Hypergraph.edge_neighbors()

	Hypergraph.edge_props

	Hypergraph.edge_size_dist()

	Hypergraph.edges

	Hypergraph.from_bipartite()

	Hypergraph.from_incidence_dataframe()

	Hypergraph.from_incidence_matrix()

	Hypergraph.from_numpy_array()

	Hypergraph.get_cell_properties()

	Hypergraph.get_linegraph()

	Hypergraph.get_properties()

	Hypergraph.incidence_dataframe()

	Hypergraph.incidence_dict

	Hypergraph.incidence_matrix()

	Hypergraph.is_connected()

	Hypergraph.neighbors()

	Hypergraph.node_diameters()

	Hypergraph.node_props

	Hypergraph.nodes

	Hypergraph.number_of_edges()

	Hypergraph.number_of_nodes()

	Hypergraph.order()

	Hypergraph.properties

	Hypergraph.remove()

	Hypergraph.remove_edges()

	Hypergraph.remove_nodes()

	Hypergraph.remove_singletons()

	Hypergraph.restrict_to_edges()

	Hypergraph.restrict_to_nodes()

	Hypergraph.s_component_subgraphs()

	Hypergraph.s_components()

	Hypergraph.s_connected_components()

	Hypergraph.set_state()

	Hypergraph.shape

	Hypergraph.singletons()

	Hypergraph.size()

	Hypergraph.toplexes()

	Module contents
	EntitySet
	EntitySet.add()

	EntitySet.add_element()

	EntitySet.add_elements_from()

	EntitySet.assign_cell_properties()

	EntitySet.assign_properties()

	EntitySet.cell_properties

	EntitySet.cell_weights

	EntitySet.children

	EntitySet.collapse_identical_elements()

	EntitySet.data

	EntitySet.dataframe

	EntitySet.dimensions

	EntitySet.dimsize

	EntitySet.elements

	EntitySet.elements_by_column()

	EntitySet.elements_by_level()

	EntitySet.empty

	EntitySet.encode()

	EntitySet.get_cell_properties()

	EntitySet.get_cell_property()

	EntitySet.get_properties()

	EntitySet.get_property()

	EntitySet.incidence_dict

	EntitySet.incidence_matrix()

	EntitySet.index()

	EntitySet.indices()

	EntitySet.is_empty()

	EntitySet.isstatic

	EntitySet.labels

	EntitySet.level()

	EntitySet.memberships

	EntitySet.properties

	EntitySet.remove()

	EntitySet.remove_element()

	EntitySet.remove_elements_from()

	EntitySet.restrict_to()

	EntitySet.restrict_to_indices()

	EntitySet.restrict_to_levels()

	EntitySet.set_cell_property()

	EntitySet.set_property()

	EntitySet.size()

	EntitySet.translate()

	EntitySet.translate_arr()

	EntitySet.uid

	EntitySet.uidset

	EntitySet.uidset_by_column()

	EntitySet.uidset_by_level()

	Hypergraph
	Hypergraph.adjacency_matrix()

	Hypergraph.auxiliary_matrix()

	Hypergraph.bipartite()

	Hypergraph.collapse_edges()

	Hypergraph.collapse_nodes()

	Hypergraph.collapse_nodes_and_edges()

	Hypergraph.component_subgraphs()

	Hypergraph.components()

	Hypergraph.connected_component_subgraphs()

	Hypergraph.connected_components()

	Hypergraph.dataframe

	Hypergraph.degree()

	Hypergraph.diameter()

	Hypergraph.dim()

	Hypergraph.distance()

	Hypergraph.dual()

	Hypergraph.edge_adjacency_matrix()

	Hypergraph.edge_diameter()

	Hypergraph.edge_diameters()

	Hypergraph.edge_distance()

	Hypergraph.edge_neighbors()

	Hypergraph.edge_props

	Hypergraph.edge_size_dist()

	Hypergraph.edges

	Hypergraph.from_bipartite()

	Hypergraph.from_incidence_dataframe()

	Hypergraph.from_incidence_matrix()

	Hypergraph.from_numpy_array()

	Hypergraph.get_cell_properties()

	Hypergraph.get_linegraph()

	Hypergraph.get_properties()

	Hypergraph.incidence_dataframe()

	Hypergraph.incidence_dict

	Hypergraph.incidence_matrix()

	Hypergraph.is_connected()

	Hypergraph.neighbors()

	Hypergraph.node_diameters()

	Hypergraph.node_props

	Hypergraph.nodes

	Hypergraph.number_of_edges()

	Hypergraph.number_of_nodes()

	Hypergraph.order()

	Hypergraph.properties

	Hypergraph.remove()

	Hypergraph.remove_edges()

	Hypergraph.remove_nodes()

	Hypergraph.remove_singletons()

	Hypergraph.restrict_to_edges()

	Hypergraph.restrict_to_nodes()

	Hypergraph.s_component_subgraphs()

	Hypergraph.s_components()

	Hypergraph.s_connected_components()

	Hypergraph.set_state()

	Hypergraph.shape

	Hypergraph.singletons()

	Hypergraph.size()

	Hypergraph.toplexes()

	Algorithms
	algorithms package
	Submodules

	algorithms.contagion module
	Gillespie_SIR()

	Gillespie_SIS()

	collective_contagion()

	contagion_animation()

	discrete_SIR()

	discrete_SIS()

	individual_contagion()

	majority_vote()

	threshold()

	algorithms.generative_models module
	chung_lu_hypergraph()

	dcsbm_hypergraph()

	erdos_renyi_hypergraph()

	algorithms.homology_mod2 module
	Homology and Smith Normal Form
	Homology Mod2

	add_to_column()

	add_to_row()

	betti()

	betti_numbers()

	bkMatrix()

	boundary_group()

	chain_complex()

	homology_basis()

	hypergraph_homology_basis()

	interpret()

	kchainbasis()

	logical_dot()

	logical_matadd()

	logical_matmul()

	matmulreduce()

	reduced_row_echelon_form_mod2()

	smith_normal_form_mod2()

	swap_columns()

	swap_rows()

	algorithms.hypergraph_modularity module
	Hypergraph_Modularity

	conductance()

	dict2part()

	kumar()

	last_step()

	linear()

	majority()

	modularity()

	part2dict()

	strict()

	two_section()

	algorithms.laplacians_clustering module
	Hypergraph Probability Transition Matrices, Laplacians, and Clustering

	get_pi()

	norm_lap()

	prob_trans()

	spec_clus()

	algorithms.s_centrality_measures module
	S-Centrality Measures

	s_betweenness_centrality()

	s_closeness_centrality()

	s_eccentricity()

	s_harmonic_centrality()

	s_harmonic_closeness_centrality()

	Module contents
	Gillespie_SIR()

	Gillespie_SIS()

	add_to_column()

	add_to_row()

	betti()

	betti_numbers()

	bkMatrix()

	boundary_group()

	chain_complex()

	chung_lu_hypergraph()

	collective_contagion()

	contagion_animation()

	dcsbm_hypergraph()

	dict2part()

	discrete_SIR()

	discrete_SIS()

	erdos_renyi_hypergraph()

	get_pi()

	homology_basis()

	hypergraph_homology_basis()

	individual_contagion()

	interpret()

	kchainbasis()

	kumar()

	last_step()

	linear()

	logical_dot()

	logical_matadd()

	logical_matmul()

	majority()

	majority_vote()

	matmulreduce()

	modularity()

	norm_lap()

	part2dict()

	prob_trans()

	reduced_row_echelon_form_mod2()

	s_betweenness_centrality()

	s_closeness_centrality()

	s_eccentricity()

	s_harmonic_centrality()

	s_harmonic_closeness_centrality()

	smith_normal_form_mod2()

	spec_clus()

	strict()

	swap_columns()

	swap_rows()

	threshold()

	two_section()

	Drawing
	drawing package
	Submodules

	drawing.rubber_band module
	draw()

	draw_hyper_edge_labels()

	draw_hyper_edges()

	draw_hyper_labels()

	draw_hyper_nodes()

	get_default_radius()

	layout_hyper_edges()

	layout_node_link()

	drawing.two_column module
	draw()

	draw_hyper_edges()

	draw_hyper_labels()

	layout_two_column()

	drawing.util module
	get_collapsed_size()

	get_frozenset_label()

	get_line_graph()

	get_set_layering()

	inflate()

	inflate_kwargs()

	transpose_inflated_kwargs()

	Module contents
	draw()

	draw_two_column()

	Reports
	reports package
	Submodules

	reports.descriptive_stats module
	centrality_stats()

	comp_dist()

	degree_dist()

	dist_stats()

	edge_size_dist()

	info()

	info_dict()

	s_comp_dist()

	s_edge_diameter_dist()

	s_node_diameter_dist()

	toplex_dist()

	Module contents
	centrality_stats()

	comp_dist()

	degree_dist()

	dist_stats()

	edge_size_dist()

	info()

	info_dict()

	s_comp_dist()

	s_edge_diameter_dist()

	s_node_diameter_dist()

	toplex_dist()

 classes

classes

	classes package
	Submodules

	classes.entityset module
	EntitySet
	EntitySet.add()

	EntitySet.add_element()

	EntitySet.add_elements_from()

	EntitySet.assign_cell_properties()

	EntitySet.assign_properties()

	EntitySet.cell_properties

	EntitySet.cell_weights

	EntitySet.children

	EntitySet.collapse_identical_elements()

	EntitySet.data

	EntitySet.dataframe

	EntitySet.dimensions

	EntitySet.dimsize

	EntitySet.elements

	EntitySet.elements_by_column()

	EntitySet.elements_by_level()

	EntitySet.empty

	EntitySet.encode()

	EntitySet.get_cell_properties()

	EntitySet.get_cell_property()

	EntitySet.get_properties()

	EntitySet.get_property()

	EntitySet.incidence_dict

	EntitySet.incidence_matrix()

	EntitySet.index()

	EntitySet.indices()

	EntitySet.is_empty()

	EntitySet.isstatic

	EntitySet.labels

	EntitySet.level()

	EntitySet.memberships

	EntitySet.properties

	EntitySet.remove()

	EntitySet.remove_element()

	EntitySet.remove_elements_from()

	EntitySet.restrict_to()

	EntitySet.restrict_to_indices()

	EntitySet.restrict_to_levels()

	EntitySet.set_cell_property()

	EntitySet.set_property()

	EntitySet.size()

	EntitySet.translate()

	EntitySet.translate_arr()

	EntitySet.uid

	EntitySet.uidset

	EntitySet.uidset_by_column()

	EntitySet.uidset_by_level()

	build_dataframe_from_entity()

	classes.helpers module
	AttrList

	assign_weights()

	create_dataframe()

	create_properties()

	dict_depth()

	encode()

	merge_nested_dicts()

	remove_row_duplicates()

	validate_mapping_for_dataframe()

	classes.hypergraph module
	Hypergraph
	Hypergraph.adjacency_matrix()

	Hypergraph.auxiliary_matrix()

	Hypergraph.bipartite()

	Hypergraph.collapse_edges()

	Hypergraph.collapse_nodes()

	Hypergraph.collapse_nodes_and_edges()

	Hypergraph.component_subgraphs()

	Hypergraph.components()

	Hypergraph.connected_component_subgraphs()

	Hypergraph.connected_components()

	Hypergraph.dataframe

	Hypergraph.degree()

	Hypergraph.diameter()

	Hypergraph.dim()

	Hypergraph.distance()

	Hypergraph.dual()

	Hypergraph.edge_adjacency_matrix()

	Hypergraph.edge_diameter()

	Hypergraph.edge_diameters()

	Hypergraph.edge_distance()

	Hypergraph.edge_neighbors()

	Hypergraph.edge_props

	Hypergraph.edge_size_dist()

	Hypergraph.edges

	Hypergraph.from_bipartite()

	Hypergraph.from_incidence_dataframe()

	Hypergraph.from_incidence_matrix()

	Hypergraph.from_numpy_array()

	Hypergraph.get_cell_properties()

	Hypergraph.get_linegraph()

	Hypergraph.get_properties()

	Hypergraph.incidence_dataframe()

	Hypergraph.incidence_dict

	Hypergraph.incidence_matrix()

	Hypergraph.is_connected()

	Hypergraph.neighbors()

	Hypergraph.node_diameters()

	Hypergraph.node_props

	Hypergraph.nodes

	Hypergraph.number_of_edges()

	Hypergraph.number_of_nodes()

	Hypergraph.order()

	Hypergraph.properties

	Hypergraph.remove()

	Hypergraph.remove_edges()

	Hypergraph.remove_nodes()

	Hypergraph.remove_singletons()

	Hypergraph.restrict_to_edges()

	Hypergraph.restrict_to_nodes()

	Hypergraph.s_component_subgraphs()

	Hypergraph.s_components()

	Hypergraph.s_connected_components()

	Hypergraph.set_state()

	Hypergraph.shape

	Hypergraph.singletons()

	Hypergraph.size()

	Hypergraph.toplexes()

	Module contents
	EntitySet
	EntitySet.add()

	EntitySet.add_element()

	EntitySet.add_elements_from()

	EntitySet.assign_cell_properties()

	EntitySet.assign_properties()

	EntitySet.cell_properties

	EntitySet.cell_weights

	EntitySet.children

	EntitySet.collapse_identical_elements()

	EntitySet.data

	EntitySet.dataframe

	EntitySet.dimensions

	EntitySet.dimsize

	EntitySet.elements

	EntitySet.elements_by_column()

	EntitySet.elements_by_level()

	EntitySet.empty

	EntitySet.encode()

	EntitySet.get_cell_properties()

	EntitySet.get_cell_property()

	EntitySet.get_properties()

	EntitySet.get_property()

	EntitySet.incidence_dict

	EntitySet.incidence_matrix()

	EntitySet.index()

	EntitySet.indices()

	EntitySet.is_empty()

	EntitySet.isstatic

	EntitySet.labels

	EntitySet.level()

	EntitySet.memberships

	EntitySet.properties

	EntitySet.remove()

	EntitySet.remove_element()

	EntitySet.remove_elements_from()

	EntitySet.restrict_to()

	EntitySet.restrict_to_indices()

	EntitySet.restrict_to_levels()

	EntitySet.set_cell_property()

	EntitySet.set_property()

	EntitySet.size()

	EntitySet.translate()

	EntitySet.translate_arr()

	EntitySet.uid

	EntitySet.uidset

	EntitySet.uidset_by_column()

	EntitySet.uidset_by_level()

	Hypergraph
	Hypergraph.adjacency_matrix()

	Hypergraph.auxiliary_matrix()

	Hypergraph.bipartite()

	Hypergraph.collapse_edges()

	Hypergraph.collapse_nodes()

	Hypergraph.collapse_nodes_and_edges()

	Hypergraph.component_subgraphs()

	Hypergraph.components()

	Hypergraph.connected_component_subgraphs()

	Hypergraph.connected_components()

	Hypergraph.dataframe

	Hypergraph.degree()

	Hypergraph.diameter()

	Hypergraph.dim()

	Hypergraph.distance()

	Hypergraph.dual()

	Hypergraph.edge_adjacency_matrix()

	Hypergraph.edge_diameter()

	Hypergraph.edge_diameters()

	Hypergraph.edge_distance()

	Hypergraph.edge_neighbors()

	Hypergraph.edge_props

	Hypergraph.edge_size_dist()

	Hypergraph.edges

	Hypergraph.from_bipartite()

	Hypergraph.from_incidence_dataframe()

	Hypergraph.from_incidence_matrix()

	Hypergraph.from_numpy_array()

	Hypergraph.get_cell_properties()

	Hypergraph.get_linegraph()

	Hypergraph.get_properties()

	Hypergraph.incidence_dataframe()

	Hypergraph.incidence_dict

	Hypergraph.incidence_matrix()

	Hypergraph.is_connected()

	Hypergraph.neighbors()

	Hypergraph.node_diameters()

	Hypergraph.node_props

	Hypergraph.nodes

	Hypergraph.number_of_edges()

	Hypergraph.number_of_nodes()

	Hypergraph.order()

	Hypergraph.properties

	Hypergraph.remove()

	Hypergraph.remove_edges()

	Hypergraph.remove_nodes()

	Hypergraph.remove_singletons()

	Hypergraph.restrict_to_edges()

	Hypergraph.restrict_to_nodes()

	Hypergraph.s_component_subgraphs()

	Hypergraph.s_components()

	Hypergraph.s_connected_components()

	Hypergraph.set_state()

	Hypergraph.shape

	Hypergraph.singletons()

	Hypergraph.size()

	Hypergraph.toplexes()

 classes package

classes package

Submodules

classes.entityset module

	
class classes.entityset.EntitySet(entity: DataFrame | Mapping[T, Iterable[T]] | Iterable[Iterable[T]] | Mapping[T, Mapping[T, Any]] | None = None, data_cols: Sequence[T] = (0, 1), data: ndarray | None = None, static: bool = True, labels: OrderedDict[T, Sequence[T]] | None = None, uid: Hashable | None = None, weight_col: str | int | None = 'cell_weights', weights: Sequence[float] | float | int | str | None = 1, aggregateby: str | dict | None = 'sum', properties: DataFrame | dict[int, dict[T, dict[Any, Any]]] | None = None, misc_props_col: str | None = None, level_col: str = 'level', id_col: str = 'id', cell_properties: Sequence[T] | DataFrame | dict[T, dict[T, dict[Any, Any]]] | None = None, misc_cell_props_col: str | None = None)

	Bases: object

Base class for handling N-dimensional data when building network-like models,
i.e., Hypergraph

	Parameters:

	
	entity (pandas.DataFrame, dict of lists or sets, dict of dicts, list of lists or sets, optional) – If a DataFrame with N columns,
represents N-dimensional entity data (data table).
Otherwise, represents 2-dimensional entity data (system of sets).

	data_cols (sequence of ints or strings, default=(0,1)) –

	level1 (str or int, default = 0) –

	level2 (str or int, default = 1) –

	data (numpy.ndarray, optional) – 2D M x N ndarray of ints (data table);
sparse representation of an N-dimensional incidence tensor with M nonzero cells.
Ignored if entity is provided.

	static (bool, default=True) – If True, entity data may not be altered,
and the state_dict will never be cleared.
Otherwise, rows may be added to and removed from the data table,
and updates will clear the state_dict.

	labels (collections.OrderedDict of lists, optional) – User-specified labels in corresponding order to ints in data.
Ignored if entity is provided or data is not provided.

	uid (hashable, optional) – A unique identifier for the object

	weight_col (string or int, default="cell_weights") –

	weights (sequence of float, float, int, str, default=1) – User-specified cell weights corresponding to entity data.
If sequence of floats and entity or data defines a data table,

length must equal the number of rows.

	If sequence of floats and entity defines a system of sets,
	length must equal the total sum of the sizes of all sets.

	If str and entity is a DataFrame,
	must be the name of a column in entity.

Otherwise, weight for all cells is assumed to be 1.

	aggregateby ({'sum', 'last', count', 'mean','median', max', 'min', 'first', None}, default="sum") – Name of function to use for aggregating cell weights of duplicate rows when
entity or data defines a data table.
If None, duplicate rows will be dropped without aggregating cell weights.
Ignored if entity defines a system of sets.

	properties (pandas.DataFrame or doubly-nested dict, optional) – User-specified properties to be assigned to individual items in the data, i.e.,
cell entries in a data table; sets or set elements in a system of sets.
See Notes for detailed explanation.
If DataFrame, each row gives
[optional item level, item label, optional named properties,
{property name: property value}]
(order of columns does not matter; see Notes for an example).
If doubly-nested dict,
{item level: {item label: {property name: property value}}}.

	misc_props_col (str, default="properties") – Column names for miscellaneous properties, level index, and item name in
properties; see Notes for explanation.

	level_col (str, default="level") –

	id_col (str, default="id") –

	cell_properties (sequence of int or str, pandas.DataFrame, or doubly-nested dict, optional) –

	misc_cell_props_col (str, default="cell_properties") –

Notes

A property is a named attribute assigned to a single item in the data.

You can pass a table of properties to properties as a DataFrame:

	Level
(optional)

	ID

	[explicit
property type]

	[…]

	misc. properties

	0

	level 0
item

	property value

	…

	{property name:
property value}

	1

	level 1
item

	property value

	…

	{property name:
property value}

	…

	…

	…

	…

	…

	N

	level N
item

	property value

	…

	{property name:
property value}

The Level column is optional. If not provided, properties will be assigned by ID
(i.e., if an ID appears at multiple levels, the same properties will be assigned to
all occurrences).

The names of the Level (if provided) and ID columns must be specified by level_col
and id_col. misc_props_col can be used to specify the name of the column to be used
for miscellaneous properties; if no column by that name is found,
a new column will be created and populated with empty dicts.
All other columns will be considered explicit property types.
The order of the columns does not matter.

This method assumes that there are no rows with the same (Level, ID);
if duplicates are found, all but the first occurrence will be dropped.

	
add(*args) → Self

	Updates the underlying data table with new entity data from multiple sources

	Parameters:

	*args – variable length argument list of Entity and/or representations of entity data

	Returns:

	self

	Return type:

	EntitySet

Warning

Adding an element directly to an Entity will not add the
element to any Hypergraphs constructed from that Entity, and will cause an error. Use
Hypergraph.add_edge or
Hypergraph.add_node_to_edge instead.

See also

	add_element
	update from a single source

Hypergraph.add_edge, Hypergraph.add_node_to_edge

	
add_element(data: DataFrame | Mapping[T, Iterable[T]] | Iterable[Iterable[T]] | Mapping[T, Mapping[T, Any]]) → Self

	Updates the underlying data table with new entity data

Supports adding from either an existing EntitySet or a representation of entity
(data table or labeled system of sets are both supported representations)

	Parameters:

	data (pandas.DataFrame, dict of lists or sets, lists of lists, or nested dict) –

	Returns:

	self

	Return type:

	EntitySet

Warning

Adding an element directly to an Entity will not add the
element to any Hypergraphs constructed from that Entity, and will cause an error. Use
Hypergraph.add_edge or Hypergraph.add_node_to_edge instead.

See also

	add
	takes multiple sources of new entity data as variable length argument list

Hypergraph.add_edge, Hypergraph.add_node_to_edge

	
add_elements_from(arg_set) → Self

	Adds arguments from an iterable to the data table one at a time

	DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]
	Duplicates add

	Parameters:

	arg_set (iterable) – list of Entity and/or representations of entity data

	Returns:

	self

	Return type:

	EntitySet

	
assign_cell_properties(cell_props: DataFrame | dict[T, dict[T, dict[Any, Any]]], misc_col: str | None = None, replace: bool = False) → None

	Assign new properties to cells of the incidence matrix and update
properties

	Parameters:

	
	cell_props (pandas.DataFrame, dict of iterables, or doubly-nested dict, optional) – See documentation of the cell_properties parameter in EntitySet

	misc_col (str, optional) – name of column to be used for miscellaneous cell property dicts

	replace (bool, default=False) – If True, replace existing cell_properties with result;
otherwise update with new values from result

	Raises:

	AttributeError – Not supported for :attr:`dimsize`=1

	
assign_properties(props: DataFrame | dict[int, dict[T, dict[Any, Any]]], misc_col: str | None = None, level_col=0, id_col=1) → None

	Assign new properties to items in the data table, update properties

	Parameters:

	
	props (pandas.DataFrame or doubly-nested dict) – See documentation of the properties parameter in EntitySet

	level_col (str, optional) – column names corresponding to the levels, items, and misc. properties;
if None, default to _level_col, _id_col, _misc_props_col,
respectively.

	id_col (str, optional) – column names corresponding to the levels, items, and misc. properties;
if None, default to _level_col, _id_col, _misc_props_col,
respectively.

	misc_col (str, optional) – column names corresponding to the levels, items, and misc. properties;
if None, default to _level_col, _id_col, _misc_props_col,
respectively.

See also

properties

	
property cell_properties: DataFrame | None

	Properties assigned to cells of the incidence matrix

	Returns:

	Returns None if dimsize < 2

	Return type:

	pandas.DataFrame, optional

	
property cell_weights: dict[str, tuple[T]]

	Cell weights corresponding to each row of the underlying data table

	Returns:

	dict of {tuple – Keyed by row of data table (as a tuple)

	Return type:

	int or float}

	
property children: set

	Labels of all items in level 1 (second column) of the underlying data table

	Return type:

	set

See also

	uidset
	Labels of all items in level 0 (first column)

uidset_by_level, uidset_by_column

	
collapse_identical_elements(return_equivalence_classes: bool = False, **kwargs) → EntitySet | tuple[classes.entityset.EntitySet, dict[str, list[str]]]

	Create a new EntitySet by collapsing sets with the same set elements

Each item in level 0 (first column) defines a set containing all the level 1
(second column) items with which it appears in the same row of the underlying
data table.

	Parameters:

	
	return_equivalence_classes (bool, default=False) – If True, return a dictionary of equivalence classes keyed by new edge names

	**kwargs – Extra arguments to EntitySet constructor

	Returns:

	
	new_entity (EntitySet) – new EntitySet with identical sets collapsed;
if all sets are unique, the system of sets will be the same as the original.

	equivalence_classes (dict of lists, optional) – if return_equivalence_classes`=True,
``{collapsed set label: [level 0 item labels]}`.

	
property data: ndarray

	Sparse representation of the data table as an incidence tensor

This can also be thought of as an encoding of dataframe, where items in each column of
the data table are translated to their int position in the self.labels[column] list
:returns: 2D array of ints representing rows of the underlying data table as indices in an incidence tensor
:rtype: numpy.ndarray

See also

labels, dataframe

	
property dataframe: DataFrame

	The underlying data table stored by the Entity

	Return type:

	pandas.DataFrame

	
property dimensions: tuple[int]

	Dimensions of data i.e., the number of distinct items in each level (column) of the underlying data table

	Returns:

	Length and order corresponds to columns of self.dataframe (excluding cell weight column)

	Return type:

	tuple of ints

	
property dimsize: int

	Number of levels (columns) in the underlying data table

	Returns:

	Equal to length of self.dimensions

	Return type:

	int

	
property elements: dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of the first two levels (columns) of the underlying data table

Each item in level 0 (first column) defines a set containing all the level 1
(second column) items with which it appears in the same row of the underlying
data table

	Returns:

	System of sets representation as dict of {level 0 item : AttrList(level 1 items)}

	Return type:

	dict of AttrList

See also

	incidence_dict
	same data as dict of list

	memberships
	dual of this representation, i.e., each item in level 1 (second column) defines a set

elements_by_level, elements_by_column

	
elements_by_column(col1: Hashable, col2: Hashable) → dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of two columns (levels) of the underlying data table

Each item in col1 defines a set containing all the col2 items
with which it appears in the same row of the underlying data table

Properties can be accessed and assigned to items in col1

	Parameters:

	
	col1 (Hashable) – name of column whose items define sets

	col2 (Hashable) – name of column whose items are elements in the system of sets

	Returns:

	System of sets representation as dict of {col1 item : AttrList(col2 items)}

	Return type:

	dict of AttrList

See also

elements, memberships

	elements_by_level
	same functionality, takes level indices instead of column names

	
elements_by_level(level1: int, level2: int) → dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of two levels (columns) of the underlying data table

Each item in level1 defines a set containing all the level2 items
with which it appears in the same row of the underlying data table

Properties can be accessed and assigned to items in level1

	Parameters:

	
	level1 (int) – index of level whose items define sets

	level2 (int) – index of level whose items are elements in the system of sets

	Returns:

	System of sets representation as dict of {level1 item : AttrList(level2 items)}

	Return type:

	dict of AttrList

See also

elements, memberships

	elements_by_column
	same functionality, takes column names instead of level indices

	
property empty: bool

	Whether the underlying data table is empty or not

	Return type:

	bool

See also

	is_empty
	for checking whether a specified level (column) is empty

	dimsize
	0 if empty

	
encode(data: DataFrame) → array

	Encode dataframe to numpy array

	Parameters:

	data (dataframe, dataframe columns must have dtype set to 'category') –

	Return type:

	numpy.array

	
get_cell_properties(item1: T, item2: T) → dict[Any, Any] | None

	Get all properties of a cell, i.e., incidence between items of different
levels

	Parameters:

	
	item1 (hashable) – name of an item in level 0

	item2 (hashable) – name of an item in level 1

	Returns:

	
	dict – {named cell property: cell property value, ..., misc. cell property column
name: {cell property name: cell property value}}

	None – If properties do not exist

See also

get_cell_property, set_cell_property

	
get_cell_property(item1: T, item2: T, prop_name: Any) → Any

	Get a property of a cell i.e., incidence between items of different levels

	Parameters:

	
	item1 (hashable) – name of an item in level 0

	item2 (hashable) – name of an item in level 1

	prop_name (hashable) – name of the cell property to get

	Returns:

	
	prop_val (any) – value of the cell property

	None – If prop_name not found

	Raises:

	KeyError – If (item1, item2) is not in cell_properties

See also

get_cell_properties, set_cell_property

	
get_properties(item: T, level: int | None = None) → dict[Any, Any]

	Get all properties of an item

	Parameters:

	
	item (hashable) – name of an item

	level (int, optional) – level index of the item

	Returns:

	prop_vals – {named property: property value, ...,
misc. property column name: {property name: property value}}

	Return type:

	dict

	Raises:

	KeyError – if (level, item) is not in properties,
 or if level is not provided and item is not in properties

	Warns:

	UserWarning – If level is not provided and item appears in multiple levels,
assumes the first (closest to 0)

See also

get_property, set_property

	
get_property(item: T, prop_name: Any, level: int | None = None) → Any

	Get a property of an item

	Parameters:

	
	item (hashable) – name of an item

	prop_name (hashable) – name of the property to get

	level (int, optional) – level index of the item

	Returns:

	
	prop_val (any) – value of the property

	None – if property not found

	Raises:

	KeyError – if (level, item) is not in properties,
 or if level is not provided and item is not in properties

	Warns:

	UserWarning – If level is not provided and item appears in multiple levels,
assumes the first (closest to 0)

See also

get_properties, set_property

	
property incidence_dict: dict[T, list[T]]

	System of sets representation of the first two levels (columns) of the underlying data table

	Returns:

	System of sets representation as dict of {level 0 item : AttrList(level 1 items)}

	Return type:

	dict of list

See also

	elements
	same data as dict of AttrList

	
incidence_matrix(level1: int = 0, level2: int = 1, weights: bool | dict = False, aggregateby: str = 'count') → csr_matrix | None

	Incidence matrix representation for two levels (columns) of the underlying data table

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

If level1 and level2 contain N and M distinct items, respectively, the incidence matrix will be M x N.
In other words, the items in level1 and level2 correspond to the columns and rows of the incidence matrix,
respectively, in the order in which they appear in self.labels[column1] and self.labels[column2]
(column1 and column2 are the column labels of level1 and level2)

	Parameters:

	
	level1 (int, default=0) – index of first level (column)

	level2 (int, default=1) – index of second level

	weights (bool or dict, default=False) – If False all nonzero entries are 1.
If True all nonzero entries are filled by self.cell_weight
dictionary values, use aggregateby to specify how duplicate
entries should have weights aggregated.
If dict of {(level1 item, level2 item): weight value} form;
only nonzero cells in the incidence matrix will be updated by dictionary,
i.e., level1 item and level2 item must appear in the same row at least once in the underlying data table

	aggregateby ({'last', count', 'sum', 'mean','median', max', 'min', 'first', 'last', None}, default='count') –
	Method to aggregate weights of duplicate rows in data table.
	If None, then all cell weights will be set to 1.

	index (bool, optional) – Not used

	Returns:

	sparse representation of incidence matrix (i.e. Compressed Sparse Row matrix)

	Return type:

	scipy.sparse.csr.csr_matrix

Note

In the context of Hypergraphs, think level1 = edges, level2 = nodes

	
index(column: str, value: str | None = None) → int | tuple[int, int]

	Get level index corresponding to a column and (optionally) the index of a value in that column

The index of value is its position in the list given by self.labels[column], which is used
in the integer encoding of the data table self.data

	Parameters:

	
	column (str) – name of a column in self.dataframe

	value (str, optional) – label of an item in the specified column

	Returns:

	level index corresponding to column, index of value if provided

	Return type:

	int or (int, int)

See also

	indices
	for finding indices of multiple values in a column

	level
	same functionality, search for the value without specifying column

	
indices(column: str, values: str | Iterable[str]) → list[int]

	Get indices of one or more value(s) in a column

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	column (str) –

	values (str or iterable of str) –

	Returns:

	indices of values

	Return type:

	list of int

See also

	index
	for finding level index of a column and index of a single value

	
is_empty(level: int = 0) → bool

	Whether a specified level (column) of the underlying data table is empty or not

	Parameters:

	level (int) – the level of a column in the underlying data table

	Return type:

	bool

See also

	empty
	for checking whether the underlying data table is empty

	size
	number of items in a level (columns); 0 if level is empty

	
property isstatic: bool

	Whether to treat the underlying data as static or not

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]
If True, the underlying data may not be altered, and the state_dict will never be cleared
Otherwise, rows may be added to and removed from the data table, and updates will clear the state_dict

	Return type:

	bool

	
property labels: dict[str, list]

	Labels of all items in each column of the underlying data table

	Returns:

	dict of {column name: [item labels]}
The order of [item labels] corresponds to the int encoding of each item in self.data.

	Return type:

	dict of lists

See also

data, dataframe

	
level(item: str, min_level: int = 0, max_level: int | None = None, return_index: bool = True) → int | tuple[int, int] | None

	First level containing the given item label

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

Order of levels corresponds to order of columns in self.dataframe

	Parameters:

	
	item (str) –

	min_level (int, default=0) – minimum inclusive bound on range of levels to search for item

	max_level (int, optional) – maximum inclusive bound on range of levels to search for item

	return_index (bool, default=True) – If True, return index of item within the level

	Returns:

	index of first level containing the item, index of item if return_index=True
returns None if item is not found

	Return type:

	int, (int, int), or None

See also

index, indices

	
property memberships: dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of the first two levels (columns) of the
underlying data table

Each item in level 1 (second column) defines a set containing all the level 0
(first column) items with which it appears in the same row of the underlying
data table

	Returns:

	System of sets representation as dict of {level 1 item : AttrList(level 0 items)}

	Return type:

	dict of AttrList

See also

	elements
	dual of this representation i.e., each item in level 0 (first column) defines a set

elements_by_level, elements_by_column

	
property properties: DataFrame

	Properties assigned to items in the underlying data table

	Returns:

	pandas.DataFrame a dataframe with the following columns

	Return type:

	level/(edge|node), uid, weight, properties

	
remove(*args: T) → EntitySet

	Removes all rows containing specified item(s) from the underlying data table

	Parameters:

	*args – variable length argument list of items which are of type string or int

	Returns:

	self

	Return type:

	EntitySet

See also

	remove_element
	remove all rows containing a single specified item

	
remove_element(item: T) → None

	Removes all rows containing a specified item from the underlying data table

	Parameters:

	item (Union[str, int]) – the label of an edge

See also

	remove
	same functionality, accepts variable length argument list of item labels

	
remove_elements_from(arg_set)

	Removes all rows containing specified item(s) from the underlying data table

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

Duplicates remove

	Parameters:

	arg_set (iterable) – list of item labels

	Returns:

	self

	Return type:

	EntitySet

	
restrict_to(indices: int | Iterable[int], **kwargs) → EntitySet

	Alias of restrict_to_indices() with default parameter `level`=0

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	indices (array_like of int) – indices of item label(s) in level to restrict to

	**kwargs – Extra arguments to EntitySet constructor

	Return type:

	EntitySet

See also

restrict_to_indices

	
restrict_to_indices(indices: int | Iterable[int], level: int = 0, **kwargs) → EntitySet

	Create a new EntitySet by restricting the data table to rows containing specific items in a given level

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	indices (int or iterable of int) – indices of item label(s) in level to restrict to

	level (int, default=0) – level index

	**kwargs – Extra arguments to EntitySet constructor

	Return type:

	EntitySet

	
restrict_to_levels(levels: int | Iterable[int], weights: bool = False, aggregateby: str | None = 'sum', keep_memberships: bool = True, **kwargs) → EntitySet

	Create a new EntitySet by restricting to a subset of levels (columns) in the
underlying data table

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	levels (array-like of int) – indices of a subset of levels (columns) of data

	weights (bool, default=False) – If True, aggregate existing cell weights to get new cell weights.
Otherwise, all new cell weights will be 1.

	aggregateby ({'sum', 'first', 'last', 'count', 'mean', 'median', 'max', 'min', None}, optional) – Method to aggregate weights of duplicate rows in data table
If None or `weights`=False then all new cell weights will be 1

	keep_memberships (bool, default=True) – Whether to preserve membership information for the discarded level when
the new EntitySet is restricted to a single level

	**kwargs – Extra arguments to EntitySet constructor

	Return type:

	EntitySet

	Raises:

	KeyError – If levels contains any invalid values

	
set_cell_property(item1: T, item2: T, prop_name: Any, prop_val: Any) → None

	Set a property of a cell i.e., incidence between items of different levels

	Parameters:

	
	item1 (hashable) – name of an item in level 0

	item2 (hashable) – name of an item in level 1

	prop_name (hashable) – name of the cell property to set

	prop_val (any) – value of the cell property to set

See also

get_cell_property, get_cell_properties

	
set_property(item: T, prop_name: Any, prop_val: Any, level: int | None = None) → None

	Set a property of an item

	Parameters:

	
	item (hashable) – name of an item

	prop_name (hashable) – name of the property to set

	prop_val (any) – value of the property to set

	level (int, optional) – level index of the item;
required if item is not already in properties

	Raises:

	ValueError – If level is not provided and item is not in properties

	Warns:

	UserWarning – If level is not provided and item appears in multiple levels,
assumes the first (closest to 0)

See also

get_property, get_properties

	
size(level: int = 0) → int

	The number of items in a level of the underlying data table

Equivalent to self.dimensions[level]

	Parameters:

	level (int, default=0) –

	Return type:

	int

See also

dimensions

	
translate(level: int, index: int | list[int]) → str | list[str]

	Given indices of a level and value(s), return the corresponding value label(s)

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	level (int) – the index of the level

	index (int or list of int) – value index or indices

	Returns:

	label(s) corresponding to value index or indices

	Return type:

	str or list of str

See also

	translate_arr
	translate a full row of value indices across all levels (columns)

	
translate_arr(coords: tuple[int, int]) → list[str]

	Translate a full encoded row of the data table e.g., a row of self.data

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	coords (tuple of ints) – encoded value indices, with one value index for each level of the data

	Returns:

	full row of translated value labels

	Return type:

	list of str

	
property uid: Hashable

	User-defined unique identifier for the Entity

	Return type:

	Hashable

	
property uidset: set

	Labels of all items in level 0 (first column) of the underlying data table

	Return type:

	set

See also

	children
	Labels of all items in level 1 (second column)

uidset_by_level, uidset_by_column

	
uidset_by_column(column: Hashable) → set

	Labels of all items in a particular column (level) of the underlying data table

	Parameters:

	column (Hashable) – Name of a column in self.dataframe

	Return type:

	set

See also

	uidset
	Labels of all items in level 0 (first column)

	children
	Labels of all items in level 1 (second column)

	uidset_by_level
	Same functionality, takes the level index instead of column name

	
uidset_by_level(level: int) → set

	Labels of all items in a particular level (column) of the underlying data table

	Parameters:

	level (int) –

	Return type:

	set

See also

	uidset
	Labels of all items in level 0 (first column)

	children
	Labels of all items in level 1 (second column)

	uidset_by_column
	Same functionality, takes the column name instead of level index

	
classes.entityset.build_dataframe_from_entity(entity: DataFrame | Mapping[str | int, Iterable[str | int]] | Iterable[Iterable[str | int]] | Mapping[T, Mapping[T, Mapping[T, Any]]], data_cols: Sequence[str | int]) → DataFrame

	

classes.helpers module

	
class classes.helpers.AttrList(entity: EntitySet, key: tuple[int, str | int], initlist: list | None = None)

	Bases: UserList

Custom list wrapper for integrated property storage in Entity

	Parameters:

	
	entity (hypernetx.EntitySet) –

	key (tuple of (int, str or int)) – (level, item)

	initlist (list, optional) – list of elements, passed to UserList constructor

	
classes.helpers.assign_weights(df: DataFrame, weights: list | tuple | ndarray | Hashable = 1, weight_col: Hashable = 'cell_weights')

	
	Parameters:

	
	df (pandas.DataFrame) – A DataFrame to assign a weight column to

	weights (array-like or Hashable, optional) – If numpy.ndarray with the same length as df, create a new weight column with
these values.
If Hashable, must be the name of a column of df to assign as the weight column
Otherwise, create a new weight column assigning a weight of 1 to every row

	weight_col (Hashable) – Name for new column if one is created (not used if the name of an existing
column is passed as weights)

	Returns:

	
	df (pandas.DataFrame) – The original DataFrame with a new column added if needed

	weight_col (str) – Name of the column assigned to hold weights

Note

TODO: move logic for default weights inside this method

	
classes.helpers.create_dataframe(data: Mapping[str | int, Iterable[str | int]]) → DataFrame

	Create a valid pandas Dataframe that can be used for the ‘entity’ param in EntitySet

	
classes.helpers.create_properties(props: DataFrame | dict[str | int, collections.abc.Iterable[str | int]] | dict[str | int, dict[str | int, dict[Any, Any]]] | None, index_cols: list[str], misc_col: str) → DataFrame

	Helper function for initializing properties and cell properties

	Parameters:

	
	props (pandas.DataFrame, dict of iterables, doubly-nested dict, or None) – See documentation of the properties parameter in Entity,
cell_properties parameter in EntitySet

	index_cols (list of str) – names of columns to be used as levels of the MultiIndex

	misc_col (str) – name of column to be used for miscellaneous property dicts

	Returns:

	with MultiIndex on index_cols;
each entry of the miscellaneous column holds dict of
{property name: property value}

	Return type:

	pandas.DataFrame

	
classes.helpers.dict_depth(dic, level=0)

	

	
classes.helpers.encode(data: DataFrame)

	Encode dataframe to numpy array

	Parameters:

	data (dataframe) –

	Return type:

	numpy.array

	
classes.helpers.merge_nested_dicts(a, b, path=None)

	merges b into a

	
classes.helpers.remove_row_duplicates(df, data_cols, weights=1, weight_col='cell_weights', aggregateby=None)

	Removes and aggregates duplicate rows of a DataFrame using groupby
Also sets the dtype of entity data columns to categorical (simplifies encoding, etc.)

	Parameters:

	
	df (pandas.DataFrame) – A DataFrame to remove or aggregate duplicate rows from

	data_cols (list) – A list of column names in df to perform the groupby on / remove duplicates from

	weights (array-like or Hashable, optional) – Argument passed to assign_weights

	aggregateby (str, optional, default='sum') – A valid aggregation method for pandas groupby
If None, drop duplicates without aggregating weights

	Returns:

	
	df (pandas.DataFrame) – The DataFrame with duplicate rows removed or aggregated

	weight_col (Hashable) – The name of the column holding aggregated weights, or None if aggregateby=None

	
classes.helpers.validate_mapping_for_dataframe(data: Mapping[str | int, Iterable[str | int]]) → None

	

classes.hypergraph module

	
class classes.hypergraph.Hypergraph(setsystem: DataFrame | ndarray | Mapping[T, Iterable[T]] | Iterable[Iterable[T]] | Mapping[T, Mapping[T, Mapping[str, Any]]] | None = None, edge_col: str | int = 0, node_col: str | int = 1, cell_weight_col: str | int | None = 'cell_weights', cell_weights: Sequence[float] | float = 1.0, cell_properties: Sequence[str | int] | Mapping[T, Mapping[T, Mapping[str, Any]]] | None = None, misc_cell_properties_col: str | int | None = None, aggregateby: str | dict[str, str] = 'first', edge_properties: DataFrame | dict[T, dict[Any, Any]] | None = None, node_properties: DataFrame | dict[T, dict[Any, Any]] | None = None, properties: DataFrame | dict[T, dict[Any, Any]] | dict[T, dict[T, dict[Any, Any]]] | None = None, misc_properties_col: str | int | None = None, edge_weight_prop_col: str | int = 'weight', node_weight_prop_col: str | int = 'weight', weight_prop_col: str | int = 'weight', default_edge_weight: float | None = None, default_node_weight: float | None = None, default_weight: float = 1.0, name: str | None = None, **kwargs)

	Bases: object

	Parameters:

	
	setsystem ((optional) dict of iterables, dict of dicts,iterable of iterables,) – pandas.DataFrame, numpy.ndarray, default = None
See SetSystem above for additional setsystem requirements.

	edge_col ((optional) str | int, default = 0) – column index (or name) in pandas.dataframe or numpy.ndarray,
used for (hyper)edge ids. Will be used to reference edgeids for
all set systems.

	node_col ((optional) str | int, default = 1) – column index (or name) in pandas.dataframe or numpy.ndarray,
used for node ids. Will be used to reference nodeids for all set systems.

	cell_weight_col ((optional) str | int, default = None) – column index (or name) in pandas.dataframe or numpy.ndarray used for
referencing cell weights. For a dict of dicts references key in cell
property dicts.

	cell_weights ((optional) Sequence[float,int] | int | float , default = 1.0) – User specified cell_weights or default cell weight.
Sequential values are only used if setsystem is a
dataframe or ndarray in which case the sequence must
have the same length and order as these objects.
Sequential values are ignored for dataframes if cell_weight_col is already
a column in the data frame.
If cell_weights is assigned a single value
then it will be used as default for missing values or when no cell_weight_col
is given.

	cell_properties ((optional) Sequence[int | str] | Mapping[T,Mapping[T,Mapping[str,Any]]],) – default = None
Column names from pd.DataFrame to use as cell properties
or a dict assigning cell_property to incidence pairs of edges and
nodes. Will generate a misc_cell_properties, which may have variable lengths per cell.

	misc_cell_properties ((optional) str | int, default = None) – Column name of dataframe corresponding to a column of variable
length property dictionaries for the cell. Ignored for other setsystem
types.

	aggregateby ((optional) str, dict, default = 'first') – By default duplicate edge,node incidences will be dropped unless
specified with aggregateby.
See pandas.DataFrame.agg() methods for additional syntax and usage
information.

	edge_properties ((optional) pd.DataFrame | dict, default = None) – Properties associated with edge ids.
First column of dataframe or keys of dict link to edge ids in
setsystem.

	node_properties ((optional) pd.DataFrame | dict, default = None) – Properties associated with node ids.
First column of dataframe or keys of dict link to node ids in
setsystem.

	properties ((optional) pd.DataFrame | dict, default = None) – Concatenation/union of edge_properties and node_properties.
By default, the object id is used and should be the first column of
the dataframe, or key in the dict. If there are nodes and edges
with the same ids and different properties then use the edge_properties
and node_properties keywords.

	misc_properties ((optional) int | str, default = None) – Column of property dataframes with dtype=dict. Intended for variable
length property dictionaries for the objects.

	edge_weight_prop ((optional) str, default = None,) – Name of property in edge_properties to use for weight.

	node_weight_prop ((optional) str, default = None,) – Name of property in node_properties to use for weight.

	weight_prop ((optional) str, default = None) – Name of property in properties to use for ‘weight’

	default_edge_weight ((optional) int | float, default = 1) – Used when edge weight property is missing or undefined.

	default_node_weight ((optional) int | float, default = 1) – Used when node weight property is missing or undefined

	name ((optional) str, default = None) – Name assigned to hypergraph

Hypergraphs in HNX 2.0

An hnx.Hypergraph H = (V,E) references a pair of disjoint sets:
V = nodes (vertices) and E = (hyper)edges.

HNX allows for multi-edges by distinguishing edges by
their identifiers instead of their contents. For example, if
V = {1,2,3} and E = {e1,e2,e3},
where e1 = {1,2}, e2 = {1,2}, and e3 = {1,2,3},
the edges e1 and e2 contain the same set of nodes and yet
are distinct and are distinguishable within H = (V,E).

New as of version 2.0, HNX provides methods to easily store and
access additional metadata such as cell, edge, and node weights.
Metadata associated with (edge,node) incidences
are referenced as cell_properties.
Metadata associated with a single edge or node is referenced
as its properties.

The fundamental object needed to create a hypergraph is a setsystem. The
setsystem defines the many-to-many relationships between edges and nodes in
the hypergraph. Cell properties for the incidence pairs can be defined within
the setsystem or in a separate pandas.Dataframe or dict.
Edge and node properties are defined with a pandas.DataFrame or dict.

SetSystems

There are five types of setsystems currently accepted by the library.

	iterable of iterables : Barebones hypergraph uses Pandas default
indexing to generate hyperedge ids. Elements must be hashable.:

>>> H = Hypergraph([{1,2},{1,2},{1,2,3}])

	dictionary of iterables : the most basic way to express many-to-many
relationships providing edge ids. The elements of the iterables must be
hashable):

>>> H = Hypergraph({'e1':[1,2],'e2':[1,2],'e3':[1,2,3]})

	dictionary of dictionaries : allows cell properties to be assigned
to a specific (edge, node) incidence. This is particularly useful when
there are variable length dictionaries assigned to each pair:

>>> d = {'e1':{ 1: {'w':0.5, 'name': 'related_to'},
>>> 2: {'w':0.1, 'name': 'related_to',
>>> 'startdate': '05.13.2020'}},
>>> 'e2':{ 1: {'w':0.52, 'name': 'owned_by'},
>>> 2: {'w':0.2}},
>>> 'e3':{ 1: {'w':0.5, 'name': 'related_to'},
>>> 2: {'w':0.2, 'name': 'owner_of'},
>>> 3: {'w':1, 'type': 'relationship'}}

>>> H = Hypergraph(d, cell_weight_col='w')

	pandas.DataFrame For large datasets and for datasets with cell
properties it is most efficient to construct a hypergraph directly from
a pandas.DataFrame. Incidence pairs are in the first two columns.
Cell properties shared by all incidence pairs can be placed in their own
column of the dataframe. Variable length dictionaries of cell properties
particular to only some of the incidence pairs may be placed in a single
column of the dataframe. Representing the data above as a dataframe df:

	col1

	col2

	w

	col3

	e1

	1

	0.5

	{‘name’:’related_to’}

	e1

	2

	0.1

	
	{“name”:”related_to”,
	“startdate”:”05.13.2020”}

	e2

	1

	0.52

	{“name”:”owned_by”}

	e2

	2

	0.2

	

	…

	…

	…

	{…}

The first row of the dataframe is used to reference each column.

>>> H = Hypergraph(df,edge_col="col1",node_col="col2",
>>> cell_weight_col="w",misc_cell_properties="col3")

	numpy.ndarray For homogeneous datasets given in an ndarray a
pandas dataframe is generated and column names are added from the
edge_col and node_col arguments. Cell properties containing multiple data
types are added with a separate dataframe or dict and passed through the
cell_properties keyword.

>>> arr = np.array([['e1','1'],['e1','2'],
>>> ['e2','1'],['e2','2'],
>>> ['e3','1'],['e3','2'],['e3','3']])
>>> H = hnx.Hypergraph(arr, column_names=['col1','col2'])

Edge and Node Properties

Properties specific to a single edge or node are passed through the
keywords: edge_properties, node_properties, properties.
Properties may be passed as dataframes or dicts.
The first column or index of the dataframe or keys of the dict keys
correspond to the edge and/or node identifiers.
If identifiers are shared among edges and nodes, or are distinct
for edges and nodes, properties may be combined into a single
object and passed to the properties keyword. For example:

	id

	weight

	properties

	e1

	5.0

	{‘type’:’event’}

	e2

	0.52

	{“name”:”owned_by”}

	…

	…

	{…}

	1

	1.2

	{‘color’:’red’}

	2

	.003

	{‘name’:’Fido’,’color’:’brown’}

	3

	1.0

	{}

A properties dictionary should have the format:

dp = {id1 : {prop1:val1, prop2,val2,...}, id2 : ... }

A properties dataframe may be used for nodes and edges sharing ids
but differing in cell properties by adding a level index using 0
for edges and 1 for nodes:

	level

	id

	weight

	properties

	0

	e1

	5.0

	{‘type’:’event’}

	0

	e2

	0.52

	{“name”:”owned_by”}

	…

	…

	…

	{…}

	1

	1.2

	{‘color’:’red’}

	2

	.003

	{‘name’:’Fido’,’color’:’brown’}

	…

	…

	…

	{…}

Weights

The default key for cell and object weights is “weight”. The default value
is 1. Weights may be assigned and/or a new default prescribed in the
constructor using cell_weight_col and cell_weights for incidence pairs,
and using edge_weight_prop, node_weight_prop, weight_prop,
default_edge_weight, and default_node_weight for node and edge weights.

	
adjacency_matrix(s=1, index=False, remove_empty_rows=False)

	The s-adjacency matrix for the hypergraph.

	Parameters:

	
	s (int, optional, default = 1) –

	index (boolean, optional, default = False) – if True, will return the index of ids for rows and columns

	remove_empty_rows (boolean, optional, default = False) –

	Returns:

	
	adjacency_matrix (scipy.sparse.csr.csr_matrix)

	node_index (list) – index of ids for rows and columns

	
auxiliary_matrix(s=1, node=True, index=False)

	The unweighted s-edge or node auxiliary matrix for hypergraph

	Parameters:

	
	s (int, optional, default = 1) –

	node (bool, optional, default = True) – whether to return based on node or edge adjacencies

	Returns:

	
	auxiliary_matrix (scipy.sparse.csr.csr_matrix) – Node/Edge adjacency matrix with empty rows and columns
removed

	index (np.array) – row and column index of userids

	
bipartite()

	Constructs the networkX bipartite graph associated to hypergraph.

	Returns:

	bipartite

	Return type:

	nx.Graph()

Notes

Creates a bipartite networkx graph from hypergraph.
The nodes and (hyper)edges of hypergraph become the nodes of bipartite
graph. For every (hyper)edge e in the hypergraph and node n in e there
is an edge (n,e) in the graph.

	
collapse_edges(name=None, return_equivalence_classes=False, use_reps=None, return_counts=None)

	Constructs a new hypergraph gotten by identifying edges containing the
same nodes

	Parameters:

	
	name (hashable, optional, default = None) –

	return_equivalence_classes (boolean, optional, default = False) – Returns a dictionary of edge equivalence classes keyed by frozen
sets of nodes

	Returns:

	
	new hypergraph (Hypergraph) – Equivalent edges are collapsed to a single edge named by a
representative of the equivalent edges followed by a colon and the
number of edges it represents.

	equivalence_classes (dict) – A dictionary keyed by representative edge names with values equal
to the edges in its equivalence class

Notes

Two edges are identified if their respective elements are the same.
Using this as an equivalence relation, the uids of the edges are
partitioned into equivalence classes.

A single edge from the collapsed edges followed by a colon and the
number of elements in its equivalence class as uid for the new edge

	
collapse_nodes(name=None, return_equivalence_classes=False, use_reps=None, return_counts=None) → Hypergraph

	Constructs a new hypergraph gotten by identifying nodes contained by
the same edges

	Parameters:

	
	name (str, optional, default = None) –

	return_equivalence_classes (boolean, optional, default = False) – Returns a dictionary of node equivalence classes keyed by frozen
sets of edges

	use_reps (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE] Choose a single element from the
collapsed nodes as uid for the new node, otherwise uses a frozen
set of the uids of nodes in the equivalence class. If use_reps is True the new nodes have uids given by a
tuple of the rep and the count

	return_counts (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Returns:

	new hypergraph

	Return type:

	Hypergraph

Notes

Two nodes are identified if their respective memberships are the same.
Using this as an equivalence relation, the uids of the nodes are
partitioned into equivalence classes. A single member of the
equivalence class is chosen to represent the class followed by the
number of members of the class.

Example

>>> data = {'E1': ('a', 'b'), 'E2': ('a', 'b')}))
>>> h = Hypergraph(data)
>>> h.collapse_nodes().incidence_dict
{'E1': ['a: 2'], 'E2': ['a: 2']}

	
collapse_nodes_and_edges(name=None, return_equivalence_classes=False, use_reps=None, return_counts=None)

	Returns a new hypergraph by collapsing nodes and edges.

	Parameters:

	
	name (str, optional, default = None) –

	return_equivalence_classes (boolean, optional, default = False) – Returns a dictionary of edge equivalence classes keyed by frozen
sets of nodes

	use_reps (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE] Choose a single element from the collapsed elements as a
representative. If use_reps is True, the new elements are keyed by a tuple of the
rep and the count.

	return_counts (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Returns:

	new hypergraph

	Return type:

	Hypergraph

Notes

Collapses the Nodes and Edges of EntitySets. Two nodes(edges) are
duplicates if their respective memberships(elements) are the same.
Using this as an equivalence relation, the uids of the nodes(edges)
are partitioned into equivalence classes. A single member of the
equivalence class is chosen to represent the class followed by the
number of members of the class.

Example

>>> data = {'E1': ('a', 'b'), 'E2': ('a', 'b')}
>>> h = Hypergraph(data)
>>> h.incidence_dict
{'E1': ['a', 'b'], 'E2': ['a', 'b']}
>>> h.collapse_nodes_and_edges().incidence_dict
{'E1: 2': ['a: 2']}

	
component_subgraphs(return_singletons=False, name=None)

	Same as s_components_subgraphs() with s=1. Returns iterator.

See also

s_component_subgraphs

	
components(edges=False)

	Same as s_connected_components() with s=1, but nodes are returned
by default. Return iterator.

See also

s_connected_components

	
connected_component_subgraphs(return_singletons=True, name=None)

	Same as s_component_subgraphs() with s=1. Returns iterator

See also

s_component_subgraphs

	
connected_components(edges=False)

	Same as s_connected_components() with s=1, but nodes are returned
by default. Return iterator.

See also

s_connected_components

	
property dataframe

	Returns dataframe of incidence pairs and their properties.

	Return type:

	pd.DataFrame

	
degree(node, s=1, max_size=None)

	The number of edges of size s that contain node.

	Parameters:

	
	node (hashable) – identifier for the node.

	s (positive integer, optional, default 1) – smallest size of edge to consider in degree

	max_size (positive integer or None, optional, default = None) – largest size of edge to consider in degree

	Return type:

	int

	
diameter(s=1)

	Returns the length of the longest shortest s-walk between nodes in
hypergraph

	Parameters:

	s (int, optional, default 1) –

	Returns:

	diameter

	Return type:

	int

	Raises:

	HyperNetXError – If hypergraph is not s-edge-connected

Notes

Two nodes are s-adjacent if they share s edges.
Two nodes v_start and v_end are s-walk connected if there is a
sequence of nodes v_start, v_1, v_2, … v_n-1, v_end such that
consecutive nodes are s-adjacent. If the graph is not connected,
an error will be raised.

	
dim(edge)

	Same as size(edge)-1.

	
distance(source, target, s=1)

	Returns the shortest s-walk distance between two nodes in the
hypergraph.

	Parameters:

	
	source (node.uid or node) – a node in the hypergraph

	target (node.uid or node) – a node in the hypergraph

	s (positive integer) – the number of edges

	Returns:

	s-walk distance

	Return type:

	int

See also

edge_distance

Notes

The s-distance is the shortest s-walk length between the nodes.
An s-walk between nodes is a sequence of nodes that pairwise share
at least s edges. The length of the shortest s-walk is 1 less than
the number of nodes in the path sequence.

Uses the networkx shortest_path_length method on the graph
generated by the s-adjacency matrix.

	
dual(name=None, switch_names=True)

	Constructs a new hypergraph with roles of edges and nodes of hypergraph
reversed.

	Parameters:

	
	name (hashable, optional) –

	switch_names (bool, optional, default = True) – reverses edge_col and node_col names
unless edge_col = ‘edges’ and node_col = ‘nodes’

	Return type:

	hypergraph

	
edge_adjacency_matrix(s=1, index=False)

	The s-adjacency matrix for the dual hypergraph.

	Parameters:

	
	s (int, optional, default 1) –

	index (boolean, optional, default = False) – if True, will return the index of ids for rows and columns

	Returns:

	
	edge_adjacency_matrix (scipy.sparse.csr.csr_matrix)

	edge_index (list) – index of ids for rows and columns

Notes

This is also the adjacency matrix for the line graph.
Two edges are s-adjacent if they share at least s nodes.
If remove_zeros is True will return the auxillary matrix

	
edge_diameter(s=1)

	Returns the length of the longest shortest s-walk between edges in
hypergraph

	Parameters:

	s (int, optional, default 1) –

	Returns:

	edge_diameter

	Return type:

	int

	Raises:

	HyperNetXError – If hypergraph is not s-edge-connected

Notes

Two edges are s-adjacent if they share s nodes.
Two nodes e_start and e_end are s-walk connected if there is a
sequence of edges e_start, e_1, e_2, … e_n-1, e_end such that
consecutive edges are s-adjacent. If the graph is not connected, an
error will be raised.

	
edge_diameters(s=1)

	Returns the edge diameters of the s_edge_connected component subgraphs
in hypergraph.

	Parameters:

	s (int, optional, default 1) –

	Returns:

	
	maximum diameter (int)

	list of diameters (list) – List of edge_diameters for s-edge component subgraphs in hypergraph

	list of component (list) – List of the edge uids in the s-edge component subgraphs.

	
edge_distance(source, target, s=1)

	XX TODO: still need to return path and translate into user defined
nodes and edges Returns the shortest s-walk distance between two edges
in the hypergraph.

	Parameters:

	
	source (edge.uid or edge) – an edge in the hypergraph

	target (edge.uid or edge) – an edge in the hypergraph

	s (positive integer) – the number of intersections between pairwise consecutive edges

	TODO (add edge weights) –

	weight (None or string, optional, default = None) – if None then all edges have weight 1. If string then edge attribute
string is used if available.

	Returns:

	s- walk distance – A shortest s-walk is computed as a sequence of edges,
the s-walk distance is the number of edges in the sequence
minus 1. If no such path exists returns np.inf.

	Return type:

	the shortest s-walk edge distance

See also

distance

Notes

The s-distance is the shortest s-walk length between the edges.
An s-walk between edges is a sequence of edges such that
consecutive pairwise edges intersect in at least s nodes. The
length of the shortest s-walk is 1 less than the number of edges
in the path sequence.

Uses the networkx shortest_path_length method on the graph
generated by the s-edge_adjacency matrix.

	
edge_neighbors(edge, s=1)

	The edges in hypergraph which share s nodes(s) with edge.

	Parameters:

	
	edge (hashable or EntitySet) – uid for a edge in hypergraph or the edge Entity

	s (int, list, optional, default = 1) – Minimum number of nodes shared by neighbors edge node.

	Returns:

	List of edge neighbors

	Return type:

	list

	
property edge_props

	Dataframe of edge properties
indexed on edge ids

	Return type:

	pd.DataFrame

	
edge_size_dist()

	Returns the size for each edge

	Return type:

	np.array

	
property edges

	Object associated with self._edges.

	Return type:

	EntitySet

	
classmethod from_bipartite(B, set_names=('edges', 'nodes'), name=None, **kwargs)

	Static method creates a Hypergraph from a bipartite graph.

	Parameters:

	
	B (nx.Graph()) – A networkx bipartite graph. Each node in the graph has a property
‘bipartite’ taking the value of 0 or 1 indicating a 2-coloring of
the graph.

	set_names (iterable of length 2, optional, default = ['edges','nodes']) – Category names assigned to the graph nodes associated to each
bipartite set

	name (hashable, optional) –

	Return type:

	Hypergraph

Notes

A partition for the nodes in a bipartite graph generates a hypergraph.

>>> import networkx as nx
>>> B = nx.Graph()
>>> B.add_nodes_from([1, 2, 3, 4], bipartite=0)
>>> B.add_nodes_from(['a', 'b', 'c'], bipartite=1)
>>> B.add_edges_from([(1, 'a'), (1, 'b'), (2, 'b'), (2, 'c'), /
 (3, 'c'), (4, 'a')])
>>> H = Hypergraph.from_bipartite(B)
>>> H.nodes, H.edges
output: (EntitySet(_:Nodes,[1, 2, 3, 4],{}), /
EntitySet(_:Edges,['b', 'c', 'a'],{}))

	
classmethod from_incidence_dataframe(df, columns=None, rows=None, edge_col: str = 'edges', node_col: str = 'nodes', name=None, fillna=0, transpose=False, transforms=[], key=None, return_only_dataframe=False, **kwargs)

	Create a hypergraph from a Pandas Dataframe object, which has values equal
to the incidence matrix of a hypergraph. Its index will identify the nodes
and its columns will identify its edges.

	Parameters:

	
	df (Pandas.Dataframe) – a real valued dataframe with a single index

	columns ((optional) list, default = None) – restricts df to the columns with headers in this list.

	rows ((optional) list, default = None) – restricts df to the rows indexed by the elements in this list.

	name ((optional) string, default = None) –

	fillna (float, default = 0) – a real value to place in empty cell, all-zero columns will not
generate an edge.

	transpose ((optional) bool, default = False) – option to transpose the dataframe, in this case df.Index will
identify the edges and df.columns will identify the nodes, transpose is
applied before transforms and key

	transforms ((optional) list, default = []) – optional list of transformations to apply to each column,
of the dataframe using pd.DataFrame.apply().
Transformations are applied in the order they are
given (ex. abs). To apply transforms to rows or for additional
functionality, consider transforming df using pandas.DataFrame
methods prior to generating the hypergraph.

	key ((optional) function, default = None) – boolean function to be applied to dataframe. will be applied to
entire dataframe.

	return_only_dataframe ((optional) bool, default = False) – to use the incidence_dataframe with cell_properties or properties, set this
to true and use it as the setsystem in the Hypergraph constructor.

See also

from_numpy_array

	Return type:

	Hypergraph

	
classmethod from_incidence_matrix(M, node_names=None, edge_names=None, node_label='nodes', edge_label='edges', name=None, key=None, **kwargs)

	Same as from_numpy_array.

	
classmethod from_numpy_array(M, node_names=None, edge_names=None, node_label='nodes', edge_label='edges', name=None, key=None, **kwargs)

	Create a hypergraph from a real valued matrix represented as a 2 dimensionsl numpy array.
The matrix is converted to a matrix of 0’s and 1’s so that any truthy cells are converted to 1’s and
all others to 0’s.

	Parameters:

	
	M (real valued array-like object, 2 dimensions) – representing a real valued matrix with rows corresponding to nodes and columns to edges

	node_names (object, array-like, default=None) – List of node names must be the same length as M.shape[0].
If None then the node names correspond to row indices with ‘v’ prepended.

	edge_names (object, array-like, default=None) – List of edge names must have the same length as M.shape[1].
If None then the edge names correspond to column indices with ‘e’ prepended.

	name (hashable) –

	key ((optional) function) – boolean function to be evaluated on each cell of the array,
must be applicable to numpy.array

	Return type:

	Hypergraph

Note

The constructor does not generate empty edges.
All zero columns in M are removed and the names corresponding to these
edges are discarded.

	
get_cell_properties(edge: str, node: str, prop_name: str | None = None) → Any | dict[str, Any]

	Get cell properties on a specified edge and node

	Parameters:

	
	edge (str) – edgeid

	node (str) – nodeid

	prop_name (str, optional) – name of a cell property; if None, all cell properties will be returned

	Returns:

	cell property value if prop_name is provided, otherwise dict of all
cell properties and values

	Return type:

	int or str or dict of {str: any}

	
get_linegraph(s=1, edges=True)

	Creates an ::term::s-linegraph for the Hypergraph.
If edges=True (default)then the edges will be the vertices of the line
graph. Two vertices are connected by an s-line-graph edge if the
corresponding hypergraph edges intersect in at least s hypergraph nodes.
If edges=False, the hypergraph nodes will be the vertices of the line
graph. Two vertices are connected if the nodes they correspond to share
at least s incident hyper edges.

	Parameters:

	
	s (int) – The width of the connections.

	edges (bool, optional, default = True) – Determine if edges or nodes will be the vertices in the linegraph.

	Returns:

	A NetworkX graph.

	Return type:

	nx.Graph

	
get_properties(id, level=None, prop_name=None)

	Returns an object’s specific property or all properties

	Parameters:

	
	id (hashable) – edge or node id

	level (int | None , optional, default = None) – if separate edge and node properties then enter 0 for edges
and 1 for nodes.

	prop_name (str | None, optional, default = None) – if None then all properties associated with the object will be
returned.

	Returns:

	single property or dictionary of properties

	Return type:

	str or dict

	
incidence_dataframe(sort_rows=False, sort_columns=False, cell_weights=True)

	Returns a pandas dataframe for hypergraph indexed by the nodes and
with column headers given by the edge names.

	Parameters:

	
	sort_rows (bool, optional, default =True) – sort rows based on hashable node names

	sort_columns (bool, optional, default =True) – sort columns based on hashable edge names

	cell_weights (bool, optional, default =True) –

	
property incidence_dict

	Dictionary keyed by edge uids with values the uids of nodes in each
edge

	Return type:

	dict

	
incidence_matrix(weights=False, index=False)

	An incidence matrix for the hypergraph indexed by nodes x edges.

	Parameters:

	
	weights (bool, default =False) – If False all nonzero entries are 1.
If True and self.static all nonzero entries are filled by
self.edges.cell_weights dictionary values.

	index (boolean, optional, default = False) – If True return will include a dictionary of node uid : row number
and edge uid : column number

	Returns:

	
	incidence_matrix (scipy.sparse.csr.csr_matrix or np.ndarray)

	row_index (list) – index of node ids for rows

	col_index (list) – index of edge ids for columns

	
is_connected(s=1, edges=False)

	Determines if hypergraph is s-connected.

	Parameters:

	
	s (int, optional, default 1) –

	edges (boolean, optional, default = False) – If True, will determine if s-edge-connected.
For s=1 s-edge-connected is the same as s-connected.

	Returns:

	is_connected

	Return type:

	boolean

Notes

A hypergraph is s node connected if for any two nodes v0,vn
there exists a sequence of nodes v0,v1,v2,…,v(n-1),vn
such that every consecutive pair of nodes v(i),v(i+1)
share at least s edges.

A hypergraph is s edge connected if for any two edges e0,en
there exists a sequence of edges e0,e1,e2,…,e(n-1),en
such that every consecutive pair of edges e(i),e(i+1)
share at least s nodes.

	
neighbors(node, s=1)

	The nodes in hypergraph which share s edge(s) with node.

	Parameters:

	
	node (hashable or EntitySet) – uid for a node in hypergraph or the node Entity

	s (int, list, optional, default = 1) – Minimum number of edges shared by neighbors with node.

	Returns:

	neighbors – s-neighbors share at least s edges in the hypergraph

	Return type:

	list

	
node_diameters(s=1)

	Returns the node diameters of the connected components in hypergraph.

	Parameters:

	
	and (list of the diameters of the s-components) –

	nodes (list of the s-component) –

	
property node_props

	Dataframe of node properties
indexed on node ids

	Return type:

	pd.DataFrame

	
property nodes

	Object associated with self._nodes.

	Return type:

	EntitySet

	
number_of_edges(edgeset=None)

	The number of edges in edgeset belonging to hypergraph.

	Parameters:

	edgeset (an iterable of Entities, optional, default = None) – If None, then return the number of edges in hypergraph.

	Returns:

	number_of_edges

	Return type:

	int

	
number_of_nodes(nodeset=None)

	The number of nodes in nodeset belonging to hypergraph.

	Parameters:

	nodeset (an interable of Entities, optional, default = None) – If None, then return the number of nodes in hypergraph.

	Returns:

	number_of_nodes

	Return type:

	int

	
order()

	The number of nodes in hypergraph.

	Returns:

	order

	Return type:

	int

	
property properties

	Returns dataframe of edge and node properties.

	Return type:

	pd.DataFrame

	
remove(keys, level=None, name=None)

	Creates a new hypergraph with nodes and/or edges indexed by keys
removed. More efficient for creating a restricted hypergraph if the
restricted set is greater than what is being removed.

	Parameters:

	
	keys (list | tuple | set | Hashable) – node and/or edge id(s) to restrict to

	level (None, optional) – Enter 0 to remove edges with ids in keys.
Enter 1 to remove nodes with ids in keys.
If None then all objects in nodes and edges with the id will
be removed.

	name (str, optional) – Name of new hypergraph

	Return type:

	hnx.Hypergraph

	
remove_edges(keys, name=None)

	

	
remove_nodes(keys, name=None)

	

	
remove_singletons(name=None)

	Constructs clone of hypergraph with singleton edges removed.

	Returns:

	new hypergraph

	Return type:

	Hypergraph

	
restrict_to_edges(edges, name=None)

	New hypergraph gotten by restricting to edges

	Parameters:

	edges (Iterable) – edgeids to restrict to

	Return type:

	hnx.Hypergraph

	
restrict_to_nodes(nodes, name=None)

	New hypergraph gotten by restricting to nodes

	Parameters:

	nodes (Iterable) – nodeids to restrict to

	Return type:

	hnx. Hypergraph

	
s_component_subgraphs(s=1, edges=True, return_singletons=False, name=None)

	Returns a generator for the induced subgraphs of s_connected
components. Removes singletons unless return_singletons is set to True.
Computed using s-linegraph generated either by the hypergraph
(edges=True) or its dual (edges = False)

	Parameters:

	
	s (int, optional, default 1) –

	edges (boolean, optional, edges=False) – Determines if edge or node components are desired. Returns
subgraphs equal to the hypergraph restricted to each set of
nodes(edges) in the s-connected components or s-edge-connected
components

	return_singletons (bool, optional) –

	Yields:

	s_component_subgraphs (iterator) – Iterator returns subgraphs generated by the edges (or nodes) in the
s-edge(node) components of hypergraph.

	
s_components(s=1, edges=True, return_singletons=True)

	Same as s_connected_components

See also

s_connected_components

	
s_connected_components(s=1, edges=True, return_singletons=False)

	Returns a generator for the s-edge-connected components
or the s-node-connected components of the hypergraph.

	Parameters:

	
	s (int, optional, default 1) –

	edges (boolean, optional, default = True) – If True will return edge components, if False will return node
components

	return_singletons (bool, optional, default = False) –

Notes

If edges=True, this method returns the s-edge-connected components as
lists of lists of edge uids.
An s-edge-component has the property that for any two edges e1 and e2
there is a sequence of edges starting with e1 and ending with e2
such that pairwise adjacent edges in the sequence intersect in at least
s nodes. If s=1 these are the path components of the hypergraph.

If edges=False this method returns s-node-connected components.
A list of sets of uids of the nodes which are s-walk connected.
Two nodes v1 and v2 are s-walk-connected if there is a
sequence of nodes starting with v1 and ending with v2 such that
pairwise adjacent nodes in the sequence share s edges. If s=1 these
are the path components of the hypergraph.

Example

>>> S = {'A':{1,2,3},'B':{2,3,4},'C':{5,6},'D':{6}}
>>> H = Hypergraph(S)

>>> list(H.s_components(edges=True))
[{'C', 'D'}, {'A', 'B'}]
>>> list(H.s_components(edges=False))
[{1, 2, 3, 4}, {5, 6}]

	Yields:

	s_connected_components (iterator) – Iterator returns sets of uids of the edges (or nodes) in the
s-edge(node) components of hypergraph.

	
set_state(**kwargs)

	Allow state_dict updates from outside of class. Use with caution.

	Parameters:

	**kwargs – key=value pairs to save in state dictionary

	
property shape

	(number of nodes, number of edges)

	Return type:

	tuple

	
singletons()

	Returns a list of singleton edges. A singleton edge is an edge of
size 1 with a node of degree 1.

	Returns:

	singles – A list of edge uids.

	Return type:

	list

	
size(edge, nodeset=None)

	The number of nodes in nodeset that belong to edge.
If nodeset is None then returns the size of edge

	Parameters:

	edge (hashable) – The uid of an edge in the hypergraph

	Returns:

	size

	Return type:

	int

	
toplexes(name=None)

	Returns a simple hypergraph corresponding to self.

Warning

Collapsing is no longer supported inside the toplexes method. Instead
generate a new collapsed hypergraph and compute the toplexes of the
new hypergraph.

	Parameters:

	name (str, optional, default = None) –

Module contents

	
class classes.EntitySet(entity: DataFrame | Mapping[T, Iterable[T]] | Iterable[Iterable[T]] | Mapping[T, Mapping[T, Any]] | None = None, data_cols: Sequence[T] = (0, 1), data: ndarray | None = None, static: bool = True, labels: OrderedDict[T, Sequence[T]] | None = None, uid: Hashable | None = None, weight_col: str | int | None = 'cell_weights', weights: Sequence[float] | float | int | str | None = 1, aggregateby: str | dict | None = 'sum', properties: DataFrame | dict[int, dict[T, dict[Any, Any]]] | None = None, misc_props_col: str | None = None, level_col: str = 'level', id_col: str = 'id', cell_properties: Sequence[T] | DataFrame | dict[T, dict[T, dict[Any, Any]]] | None = None, misc_cell_props_col: str | None = None)

	Bases: object

Base class for handling N-dimensional data when building network-like models,
i.e., Hypergraph

	Parameters:

	
	entity (pandas.DataFrame, dict of lists or sets, dict of dicts, list of lists or sets, optional) – If a DataFrame with N columns,
represents N-dimensional entity data (data table).
Otherwise, represents 2-dimensional entity data (system of sets).

	data_cols (sequence of ints or strings, default=(0,1)) –

	level1 (str or int, default = 0) –

	level2 (str or int, default = 1) –

	data (numpy.ndarray, optional) – 2D M x N ndarray of ints (data table);
sparse representation of an N-dimensional incidence tensor with M nonzero cells.
Ignored if entity is provided.

	static (bool, default=True) – If True, entity data may not be altered,
and the state_dict will never be cleared.
Otherwise, rows may be added to and removed from the data table,
and updates will clear the state_dict.

	labels (collections.OrderedDict of lists, optional) – User-specified labels in corresponding order to ints in data.
Ignored if entity is provided or data is not provided.

	uid (hashable, optional) – A unique identifier for the object

	weight_col (string or int, default="cell_weights") –

	weights (sequence of float, float, int, str, default=1) – User-specified cell weights corresponding to entity data.
If sequence of floats and entity or data defines a data table,

length must equal the number of rows.

	If sequence of floats and entity defines a system of sets,
	length must equal the total sum of the sizes of all sets.

	If str and entity is a DataFrame,
	must be the name of a column in entity.

Otherwise, weight for all cells is assumed to be 1.

	aggregateby ({'sum', 'last', count', 'mean','median', max', 'min', 'first', None}, default="sum") – Name of function to use for aggregating cell weights of duplicate rows when
entity or data defines a data table.
If None, duplicate rows will be dropped without aggregating cell weights.
Ignored if entity defines a system of sets.

	properties (pandas.DataFrame or doubly-nested dict, optional) – User-specified properties to be assigned to individual items in the data, i.e.,
cell entries in a data table; sets or set elements in a system of sets.
See Notes for detailed explanation.
If DataFrame, each row gives
[optional item level, item label, optional named properties,
{property name: property value}]
(order of columns does not matter; see Notes for an example).
If doubly-nested dict,
{item level: {item label: {property name: property value}}}.

	misc_props_col (str, default="properties") – Column names for miscellaneous properties, level index, and item name in
properties; see Notes for explanation.

	level_col (str, default="level") –

	id_col (str, default="id") –

	cell_properties (sequence of int or str, pandas.DataFrame, or doubly-nested dict, optional) –

	misc_cell_props_col (str, default="cell_properties") –

Notes

A property is a named attribute assigned to a single item in the data.

You can pass a table of properties to properties as a DataFrame:

	Level
(optional)

	ID

	[explicit
property type]

	[…]

	misc. properties

	0

	level 0
item

	property value

	…

	{property name:
property value}

	1

	level 1
item

	property value

	…

	{property name:
property value}

	…

	…

	…

	…

	…

	N

	level N
item

	property value

	…

	{property name:
property value}

The Level column is optional. If not provided, properties will be assigned by ID
(i.e., if an ID appears at multiple levels, the same properties will be assigned to
all occurrences).

The names of the Level (if provided) and ID columns must be specified by level_col
and id_col. misc_props_col can be used to specify the name of the column to be used
for miscellaneous properties; if no column by that name is found,
a new column will be created and populated with empty dicts.
All other columns will be considered explicit property types.
The order of the columns does not matter.

This method assumes that there are no rows with the same (Level, ID);
if duplicates are found, all but the first occurrence will be dropped.

	
add(*args) → Self

	Updates the underlying data table with new entity data from multiple sources

	Parameters:

	*args – variable length argument list of Entity and/or representations of entity data

	Returns:

	self

	Return type:

	EntitySet

Warning

Adding an element directly to an Entity will not add the
element to any Hypergraphs constructed from that Entity, and will cause an error. Use
Hypergraph.add_edge or
Hypergraph.add_node_to_edge instead.

See also

	add_element
	update from a single source

Hypergraph.add_edge, Hypergraph.add_node_to_edge

	
add_element(data: DataFrame | Mapping[T, Iterable[T]] | Iterable[Iterable[T]] | Mapping[T, Mapping[T, Any]]) → Self

	Updates the underlying data table with new entity data

Supports adding from either an existing EntitySet or a representation of entity
(data table or labeled system of sets are both supported representations)

	Parameters:

	data (pandas.DataFrame, dict of lists or sets, lists of lists, or nested dict) –

	Returns:

	self

	Return type:

	EntitySet

Warning

Adding an element directly to an Entity will not add the
element to any Hypergraphs constructed from that Entity, and will cause an error. Use
Hypergraph.add_edge or Hypergraph.add_node_to_edge instead.

See also

	add
	takes multiple sources of new entity data as variable length argument list

Hypergraph.add_edge, Hypergraph.add_node_to_edge

	
add_elements_from(arg_set) → Self

	Adds arguments from an iterable to the data table one at a time

	DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]
	Duplicates add

	Parameters:

	arg_set (iterable) – list of Entity and/or representations of entity data

	Returns:

	self

	Return type:

	EntitySet

	
assign_cell_properties(cell_props: DataFrame | dict[T, dict[T, dict[Any, Any]]], misc_col: str | None = None, replace: bool = False) → None

	Assign new properties to cells of the incidence matrix and update
properties

	Parameters:

	
	cell_props (pandas.DataFrame, dict of iterables, or doubly-nested dict, optional) – See documentation of the cell_properties parameter in EntitySet

	misc_col (str, optional) – name of column to be used for miscellaneous cell property dicts

	replace (bool, default=False) – If True, replace existing cell_properties with result;
otherwise update with new values from result

	Raises:

	AttributeError – Not supported for :attr:`dimsize`=1

	
assign_properties(props: DataFrame | dict[int, dict[T, dict[Any, Any]]], misc_col: str | None = None, level_col=0, id_col=1) → None

	Assign new properties to items in the data table, update properties

	Parameters:

	
	props (pandas.DataFrame or doubly-nested dict) – See documentation of the properties parameter in EntitySet

	level_col (str, optional) – column names corresponding to the levels, items, and misc. properties;
if None, default to _level_col, _id_col, _misc_props_col,
respectively.

	id_col (str, optional) – column names corresponding to the levels, items, and misc. properties;
if None, default to _level_col, _id_col, _misc_props_col,
respectively.

	misc_col (str, optional) – column names corresponding to the levels, items, and misc. properties;
if None, default to _level_col, _id_col, _misc_props_col,
respectively.

See also

properties

	
property cell_properties: DataFrame | None

	Properties assigned to cells of the incidence matrix

	Returns:

	Returns None if dimsize < 2

	Return type:

	pandas.DataFrame, optional

	
property cell_weights: dict[str, tuple[T]]

	Cell weights corresponding to each row of the underlying data table

	Returns:

	dict of {tuple – Keyed by row of data table (as a tuple)

	Return type:

	int or float}

	
property children: set

	Labels of all items in level 1 (second column) of the underlying data table

	Return type:

	set

See also

	uidset
	Labels of all items in level 0 (first column)

uidset_by_level, uidset_by_column

	
collapse_identical_elements(return_equivalence_classes: bool = False, **kwargs) → EntitySet | tuple[hypernetx.classes.entityset.EntitySet, dict[str, list[str]]]

	Create a new EntitySet by collapsing sets with the same set elements

Each item in level 0 (first column) defines a set containing all the level 1
(second column) items with which it appears in the same row of the underlying
data table.

	Parameters:

	
	return_equivalence_classes (bool, default=False) – If True, return a dictionary of equivalence classes keyed by new edge names

	**kwargs – Extra arguments to EntitySet constructor

	Returns:

	
	new_entity (EntitySet) – new EntitySet with identical sets collapsed;
if all sets are unique, the system of sets will be the same as the original.

	equivalence_classes (dict of lists, optional) – if return_equivalence_classes`=True,
``{collapsed set label: [level 0 item labels]}`.

	
property data: ndarray

	Sparse representation of the data table as an incidence tensor

This can also be thought of as an encoding of dataframe, where items in each column of
the data table are translated to their int position in the self.labels[column] list
:returns: 2D array of ints representing rows of the underlying data table as indices in an incidence tensor
:rtype: numpy.ndarray

See also

labels, dataframe

	
property dataframe: DataFrame

	The underlying data table stored by the Entity

	Return type:

	pandas.DataFrame

	
property dimensions: tuple[int]

	Dimensions of data i.e., the number of distinct items in each level (column) of the underlying data table

	Returns:

	Length and order corresponds to columns of self.dataframe (excluding cell weight column)

	Return type:

	tuple of ints

	
property dimsize: int

	Number of levels (columns) in the underlying data table

	Returns:

	Equal to length of self.dimensions

	Return type:

	int

	
property elements: dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of the first two levels (columns) of the underlying data table

Each item in level 0 (first column) defines a set containing all the level 1
(second column) items with which it appears in the same row of the underlying
data table

	Returns:

	System of sets representation as dict of {level 0 item : AttrList(level 1 items)}

	Return type:

	dict of AttrList

See also

	incidence_dict
	same data as dict of list

	memberships
	dual of this representation, i.e., each item in level 1 (second column) defines a set

elements_by_level, elements_by_column

	
elements_by_column(col1: Hashable, col2: Hashable) → dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of two columns (levels) of the underlying data table

Each item in col1 defines a set containing all the col2 items
with which it appears in the same row of the underlying data table

Properties can be accessed and assigned to items in col1

	Parameters:

	
	col1 (Hashable) – name of column whose items define sets

	col2 (Hashable) – name of column whose items are elements in the system of sets

	Returns:

	System of sets representation as dict of {col1 item : AttrList(col2 items)}

	Return type:

	dict of AttrList

See also

elements, memberships

	elements_by_level
	same functionality, takes level indices instead of column names

	
elements_by_level(level1: int, level2: int) → dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of two levels (columns) of the underlying data table

Each item in level1 defines a set containing all the level2 items
with which it appears in the same row of the underlying data table

Properties can be accessed and assigned to items in level1

	Parameters:

	
	level1 (int) – index of level whose items define sets

	level2 (int) – index of level whose items are elements in the system of sets

	Returns:

	System of sets representation as dict of {level1 item : AttrList(level2 items)}

	Return type:

	dict of AttrList

See also

elements, memberships

	elements_by_column
	same functionality, takes column names instead of level indices

	
property empty: bool

	Whether the underlying data table is empty or not

	Return type:

	bool

See also

	is_empty
	for checking whether a specified level (column) is empty

	dimsize
	0 if empty

	
encode(data: DataFrame) → array

	Encode dataframe to numpy array

	Parameters:

	data (dataframe, dataframe columns must have dtype set to 'category') –

	Return type:

	numpy.array

	
get_cell_properties(item1: T, item2: T) → dict[Any, Any] | None

	Get all properties of a cell, i.e., incidence between items of different
levels

	Parameters:

	
	item1 (hashable) – name of an item in level 0

	item2 (hashable) – name of an item in level 1

	Returns:

	
	dict – {named cell property: cell property value, ..., misc. cell property column
name: {cell property name: cell property value}}

	None – If properties do not exist

See also

get_cell_property, set_cell_property

	
get_cell_property(item1: T, item2: T, prop_name: Any) → Any

	Get a property of a cell i.e., incidence between items of different levels

	Parameters:

	
	item1 (hashable) – name of an item in level 0

	item2 (hashable) – name of an item in level 1

	prop_name (hashable) – name of the cell property to get

	Returns:

	
	prop_val (any) – value of the cell property

	None – If prop_name not found

	Raises:

	KeyError – If (item1, item2) is not in cell_properties

See also

get_cell_properties, set_cell_property

	
get_properties(item: T, level: int | None = None) → dict[Any, Any]

	Get all properties of an item

	Parameters:

	
	item (hashable) – name of an item

	level (int, optional) – level index of the item

	Returns:

	prop_vals – {named property: property value, ...,
misc. property column name: {property name: property value}}

	Return type:

	dict

	Raises:

	KeyError – if (level, item) is not in properties,
 or if level is not provided and item is not in properties

	Warns:

	UserWarning – If level is not provided and item appears in multiple levels,
assumes the first (closest to 0)

See also

get_property, set_property

	
get_property(item: T, prop_name: Any, level: int | None = None) → Any

	Get a property of an item

	Parameters:

	
	item (hashable) – name of an item

	prop_name (hashable) – name of the property to get

	level (int, optional) – level index of the item

	Returns:

	
	prop_val (any) – value of the property

	None – if property not found

	Raises:

	KeyError – if (level, item) is not in properties,
 or if level is not provided and item is not in properties

	Warns:

	UserWarning – If level is not provided and item appears in multiple levels,
assumes the first (closest to 0)

See also

get_properties, set_property

	
property incidence_dict: dict[T, list[T]]

	System of sets representation of the first two levels (columns) of the underlying data table

	Returns:

	System of sets representation as dict of {level 0 item : AttrList(level 1 items)}

	Return type:

	dict of list

See also

	elements
	same data as dict of AttrList

	
incidence_matrix(level1: int = 0, level2: int = 1, weights: bool | dict = False, aggregateby: str = 'count') → csr_matrix | None

	Incidence matrix representation for two levels (columns) of the underlying data table

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

If level1 and level2 contain N and M distinct items, respectively, the incidence matrix will be M x N.
In other words, the items in level1 and level2 correspond to the columns and rows of the incidence matrix,
respectively, in the order in which they appear in self.labels[column1] and self.labels[column2]
(column1 and column2 are the column labels of level1 and level2)

	Parameters:

	
	level1 (int, default=0) – index of first level (column)

	level2 (int, default=1) – index of second level

	weights (bool or dict, default=False) – If False all nonzero entries are 1.
If True all nonzero entries are filled by self.cell_weight
dictionary values, use aggregateby to specify how duplicate
entries should have weights aggregated.
If dict of {(level1 item, level2 item): weight value} form;
only nonzero cells in the incidence matrix will be updated by dictionary,
i.e., level1 item and level2 item must appear in the same row at least once in the underlying data table

	aggregateby ({'last', count', 'sum', 'mean','median', max', 'min', 'first', 'last', None}, default='count') –
	Method to aggregate weights of duplicate rows in data table.
	If None, then all cell weights will be set to 1.

	index (bool, optional) – Not used

	Returns:

	sparse representation of incidence matrix (i.e. Compressed Sparse Row matrix)

	Return type:

	scipy.sparse.csr.csr_matrix

Note

In the context of Hypergraphs, think level1 = edges, level2 = nodes

	
index(column: str, value: str | None = None) → int | tuple[int, int]

	Get level index corresponding to a column and (optionally) the index of a value in that column

The index of value is its position in the list given by self.labels[column], which is used
in the integer encoding of the data table self.data

	Parameters:

	
	column (str) – name of a column in self.dataframe

	value (str, optional) – label of an item in the specified column

	Returns:

	level index corresponding to column, index of value if provided

	Return type:

	int or (int, int)

See also

	indices
	for finding indices of multiple values in a column

	level
	same functionality, search for the value without specifying column

	
indices(column: str, values: str | Iterable[str]) → list[int]

	Get indices of one or more value(s) in a column

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	column (str) –

	values (str or iterable of str) –

	Returns:

	indices of values

	Return type:

	list of int

See also

	index
	for finding level index of a column and index of a single value

	
is_empty(level: int = 0) → bool

	Whether a specified level (column) of the underlying data table is empty or not

	Parameters:

	level (int) – the level of a column in the underlying data table

	Return type:

	bool

See also

	empty
	for checking whether the underlying data table is empty

	size
	number of items in a level (columns); 0 if level is empty

	
property isstatic: bool

	Whether to treat the underlying data as static or not

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]
If True, the underlying data may not be altered, and the state_dict will never be cleared
Otherwise, rows may be added to and removed from the data table, and updates will clear the state_dict

	Return type:

	bool

	
property labels: dict[str, list]

	Labels of all items in each column of the underlying data table

	Returns:

	dict of {column name: [item labels]}
The order of [item labels] corresponds to the int encoding of each item in self.data.

	Return type:

	dict of lists

See also

data, dataframe

	
level(item: str, min_level: int = 0, max_level: int | None = None, return_index: bool = True) → int | tuple[int, int] | None

	First level containing the given item label

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

Order of levels corresponds to order of columns in self.dataframe

	Parameters:

	
	item (str) –

	min_level (int, default=0) – minimum inclusive bound on range of levels to search for item

	max_level (int, optional) – maximum inclusive bound on range of levels to search for item

	return_index (bool, default=True) – If True, return index of item within the level

	Returns:

	index of first level containing the item, index of item if return_index=True
returns None if item is not found

	Return type:

	int, (int, int), or None

See also

index, indices

	
property memberships: dict[Any, hypernetx.classes.helpers.AttrList]

	System of sets representation of the first two levels (columns) of the
underlying data table

Each item in level 1 (second column) defines a set containing all the level 0
(first column) items with which it appears in the same row of the underlying
data table

	Returns:

	System of sets representation as dict of {level 1 item : AttrList(level 0 items)}

	Return type:

	dict of AttrList

See also

	elements
	dual of this representation i.e., each item in level 0 (first column) defines a set

elements_by_level, elements_by_column

	
property properties: DataFrame

	Properties assigned to items in the underlying data table

	Returns:

	pandas.DataFrame a dataframe with the following columns

	Return type:

	level/(edge|node), uid, weight, properties

	
remove(*args: T) → EntitySet

	Removes all rows containing specified item(s) from the underlying data table

	Parameters:

	*args – variable length argument list of items which are of type string or int

	Returns:

	self

	Return type:

	EntitySet

See also

	remove_element
	remove all rows containing a single specified item

	
remove_element(item: T) → None

	Removes all rows containing a specified item from the underlying data table

	Parameters:

	item (Union[str, int]) – the label of an edge

See also

	remove
	same functionality, accepts variable length argument list of item labels

	
remove_elements_from(arg_set)

	Removes all rows containing specified item(s) from the underlying data table

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

Duplicates remove

	Parameters:

	arg_set (iterable) – list of item labels

	Returns:

	self

	Return type:

	EntitySet

	
restrict_to(indices: int | Iterable[int], **kwargs) → EntitySet

	Alias of restrict_to_indices() with default parameter `level`=0

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	indices (array_like of int) – indices of item label(s) in level to restrict to

	**kwargs – Extra arguments to EntitySet constructor

	Return type:

	EntitySet

See also

restrict_to_indices

	
restrict_to_indices(indices: int | Iterable[int], level: int = 0, **kwargs) → EntitySet

	Create a new EntitySet by restricting the data table to rows containing specific items in a given level

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	indices (int or iterable of int) – indices of item label(s) in level to restrict to

	level (int, default=0) – level index

	**kwargs – Extra arguments to EntitySet constructor

	Return type:

	EntitySet

	
restrict_to_levels(levels: int | Iterable[int], weights: bool = False, aggregateby: str | None = 'sum', keep_memberships: bool = True, **kwargs) → EntitySet

	Create a new EntitySet by restricting to a subset of levels (columns) in the
underlying data table

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	levels (array-like of int) – indices of a subset of levels (columns) of data

	weights (bool, default=False) – If True, aggregate existing cell weights to get new cell weights.
Otherwise, all new cell weights will be 1.

	aggregateby ({'sum', 'first', 'last', 'count', 'mean', 'median', 'max', 'min', None}, optional) – Method to aggregate weights of duplicate rows in data table
If None or `weights`=False then all new cell weights will be 1

	keep_memberships (bool, default=True) – Whether to preserve membership information for the discarded level when
the new EntitySet is restricted to a single level

	**kwargs – Extra arguments to EntitySet constructor

	Return type:

	EntitySet

	Raises:

	KeyError – If levels contains any invalid values

	
set_cell_property(item1: T, item2: T, prop_name: Any, prop_val: Any) → None

	Set a property of a cell i.e., incidence between items of different levels

	Parameters:

	
	item1 (hashable) – name of an item in level 0

	item2 (hashable) – name of an item in level 1

	prop_name (hashable) – name of the cell property to set

	prop_val (any) – value of the cell property to set

See also

get_cell_property, get_cell_properties

	
set_property(item: T, prop_name: Any, prop_val: Any, level: int | None = None) → None

	Set a property of an item

	Parameters:

	
	item (hashable) – name of an item

	prop_name (hashable) – name of the property to set

	prop_val (any) – value of the property to set

	level (int, optional) – level index of the item;
required if item is not already in properties

	Raises:

	ValueError – If level is not provided and item is not in properties

	Warns:

	UserWarning – If level is not provided and item appears in multiple levels,
assumes the first (closest to 0)

See also

get_property, get_properties

	
size(level: int = 0) → int

	The number of items in a level of the underlying data table

Equivalent to self.dimensions[level]

	Parameters:

	level (int, default=0) –

	Return type:

	int

See also

dimensions

	
translate(level: int, index: int | list[int]) → str | list[str]

	Given indices of a level and value(s), return the corresponding value label(s)

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	
	level (int) – the index of the level

	index (int or list of int) – value index or indices

	Returns:

	label(s) corresponding to value index or indices

	Return type:

	str or list of str

See also

	translate_arr
	translate a full row of value indices across all levels (columns)

	
translate_arr(coords: tuple[int, int]) → list[str]

	Translate a full encoded row of the data table e.g., a row of self.data

[DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Parameters:

	coords (tuple of ints) – encoded value indices, with one value index for each level of the data

	Returns:

	full row of translated value labels

	Return type:

	list of str

	
property uid: Hashable

	User-defined unique identifier for the Entity

	Return type:

	Hashable

	
property uidset: set

	Labels of all items in level 0 (first column) of the underlying data table

	Return type:

	set

See also

	children
	Labels of all items in level 1 (second column)

uidset_by_level, uidset_by_column

	
uidset_by_column(column: Hashable) → set

	Labels of all items in a particular column (level) of the underlying data table

	Parameters:

	column (Hashable) – Name of a column in self.dataframe

	Return type:

	set

See also

	uidset
	Labels of all items in level 0 (first column)

	children
	Labels of all items in level 1 (second column)

	uidset_by_level
	Same functionality, takes the level index instead of column name

	
uidset_by_level(level: int) → set

	Labels of all items in a particular level (column) of the underlying data table

	Parameters:

	level (int) –

	Return type:

	set

See also

	uidset
	Labels of all items in level 0 (first column)

	children
	Labels of all items in level 1 (second column)

	uidset_by_column
	Same functionality, takes the column name instead of level index

	
class classes.Hypergraph(setsystem: DataFrame | ndarray | Mapping[T, Iterable[T]] | Iterable[Iterable[T]] | Mapping[T, Mapping[T, Mapping[str, Any]]] | None = None, edge_col: str | int = 0, node_col: str | int = 1, cell_weight_col: str | int | None = 'cell_weights', cell_weights: Sequence[float] | float = 1.0, cell_properties: Sequence[str | int] | Mapping[T, Mapping[T, Mapping[str, Any]]] | None = None, misc_cell_properties_col: str | int | None = None, aggregateby: str | dict[str, str] = 'first', edge_properties: DataFrame | dict[T, dict[Any, Any]] | None = None, node_properties: DataFrame | dict[T, dict[Any, Any]] | None = None, properties: DataFrame | dict[T, dict[Any, Any]] | dict[T, dict[T, dict[Any, Any]]] | None = None, misc_properties_col: str | int | None = None, edge_weight_prop_col: str | int = 'weight', node_weight_prop_col: str | int = 'weight', weight_prop_col: str | int = 'weight', default_edge_weight: float | None = None, default_node_weight: float | None = None, default_weight: float = 1.0, name: str | None = None, **kwargs)

	Bases: object

	Parameters:

	
	setsystem ((optional) dict of iterables, dict of dicts,iterable of iterables,) – pandas.DataFrame, numpy.ndarray, default = None
See SetSystem above for additional setsystem requirements.

	edge_col ((optional) str | int, default = 0) – column index (or name) in pandas.dataframe or numpy.ndarray,
used for (hyper)edge ids. Will be used to reference edgeids for
all set systems.

	node_col ((optional) str | int, default = 1) – column index (or name) in pandas.dataframe or numpy.ndarray,
used for node ids. Will be used to reference nodeids for all set systems.

	cell_weight_col ((optional) str | int, default = None) – column index (or name) in pandas.dataframe or numpy.ndarray used for
referencing cell weights. For a dict of dicts references key in cell
property dicts.

	cell_weights ((optional) Sequence[float,int] | int | float , default = 1.0) – User specified cell_weights or default cell weight.
Sequential values are only used if setsystem is a
dataframe or ndarray in which case the sequence must
have the same length and order as these objects.
Sequential values are ignored for dataframes if cell_weight_col is already
a column in the data frame.
If cell_weights is assigned a single value
then it will be used as default for missing values or when no cell_weight_col
is given.

	cell_properties ((optional) Sequence[int | str] | Mapping[T,Mapping[T,Mapping[str,Any]]],) – default = None
Column names from pd.DataFrame to use as cell properties
or a dict assigning cell_property to incidence pairs of edges and
nodes. Will generate a misc_cell_properties, which may have variable lengths per cell.

	misc_cell_properties ((optional) str | int, default = None) – Column name of dataframe corresponding to a column of variable
length property dictionaries for the cell. Ignored for other setsystem
types.

	aggregateby ((optional) str, dict, default = 'first') – By default duplicate edge,node incidences will be dropped unless
specified with aggregateby.
See pandas.DataFrame.agg() methods for additional syntax and usage
information.

	edge_properties ((optional) pd.DataFrame | dict, default = None) – Properties associated with edge ids.
First column of dataframe or keys of dict link to edge ids in
setsystem.

	node_properties ((optional) pd.DataFrame | dict, default = None) – Properties associated with node ids.
First column of dataframe or keys of dict link to node ids in
setsystem.

	properties ((optional) pd.DataFrame | dict, default = None) – Concatenation/union of edge_properties and node_properties.
By default, the object id is used and should be the first column of
the dataframe, or key in the dict. If there are nodes and edges
with the same ids and different properties then use the edge_properties
and node_properties keywords.

	misc_properties ((optional) int | str, default = None) – Column of property dataframes with dtype=dict. Intended for variable
length property dictionaries for the objects.

	edge_weight_prop ((optional) str, default = None,) – Name of property in edge_properties to use for weight.

	node_weight_prop ((optional) str, default = None,) – Name of property in node_properties to use for weight.

	weight_prop ((optional) str, default = None) – Name of property in properties to use for ‘weight’

	default_edge_weight ((optional) int | float, default = 1) – Used when edge weight property is missing or undefined.

	default_node_weight ((optional) int | float, default = 1) – Used when node weight property is missing or undefined

	name ((optional) str, default = None) – Name assigned to hypergraph

Hypergraphs in HNX 2.0

An hnx.Hypergraph H = (V,E) references a pair of disjoint sets:
V = nodes (vertices) and E = (hyper)edges.

HNX allows for multi-edges by distinguishing edges by
their identifiers instead of their contents. For example, if
V = {1,2,3} and E = {e1,e2,e3},
where e1 = {1,2}, e2 = {1,2}, and e3 = {1,2,3},
the edges e1 and e2 contain the same set of nodes and yet
are distinct and are distinguishable within H = (V,E).

New as of version 2.0, HNX provides methods to easily store and
access additional metadata such as cell, edge, and node weights.
Metadata associated with (edge,node) incidences
are referenced as cell_properties.
Metadata associated with a single edge or node is referenced
as its properties.

The fundamental object needed to create a hypergraph is a setsystem. The
setsystem defines the many-to-many relationships between edges and nodes in
the hypergraph. Cell properties for the incidence pairs can be defined within
the setsystem or in a separate pandas.Dataframe or dict.
Edge and node properties are defined with a pandas.DataFrame or dict.

SetSystems

There are five types of setsystems currently accepted by the library.

	iterable of iterables : Barebones hypergraph uses Pandas default
indexing to generate hyperedge ids. Elements must be hashable.:

>>> H = Hypergraph([{1,2},{1,2},{1,2,3}])

	dictionary of iterables : the most basic way to express many-to-many
relationships providing edge ids. The elements of the iterables must be
hashable):

>>> H = Hypergraph({'e1':[1,2],'e2':[1,2],'e3':[1,2,3]})

	dictionary of dictionaries : allows cell properties to be assigned
to a specific (edge, node) incidence. This is particularly useful when
there are variable length dictionaries assigned to each pair:

>>> d = {'e1':{ 1: {'w':0.5, 'name': 'related_to'},
>>> 2: {'w':0.1, 'name': 'related_to',
>>> 'startdate': '05.13.2020'}},
>>> 'e2':{ 1: {'w':0.52, 'name': 'owned_by'},
>>> 2: {'w':0.2}},
>>> 'e3':{ 1: {'w':0.5, 'name': 'related_to'},
>>> 2: {'w':0.2, 'name': 'owner_of'},
>>> 3: {'w':1, 'type': 'relationship'}}

>>> H = Hypergraph(d, cell_weight_col='w')

	pandas.DataFrame For large datasets and for datasets with cell
properties it is most efficient to construct a hypergraph directly from
a pandas.DataFrame. Incidence pairs are in the first two columns.
Cell properties shared by all incidence pairs can be placed in their own
column of the dataframe. Variable length dictionaries of cell properties
particular to only some of the incidence pairs may be placed in a single
column of the dataframe. Representing the data above as a dataframe df:

	col1

	col2

	w

	col3

	e1

	1

	0.5

	{‘name’:’related_to’}

	e1

	2

	0.1

	
	{“name”:”related_to”,
	“startdate”:”05.13.2020”}

	e2

	1

	0.52

	{“name”:”owned_by”}

	e2

	2

	0.2

	

	…

	…

	…

	{…}

The first row of the dataframe is used to reference each column.

>>> H = Hypergraph(df,edge_col="col1",node_col="col2",
>>> cell_weight_col="w",misc_cell_properties="col3")

	numpy.ndarray For homogeneous datasets given in an ndarray a
pandas dataframe is generated and column names are added from the
edge_col and node_col arguments. Cell properties containing multiple data
types are added with a separate dataframe or dict and passed through the
cell_properties keyword.

>>> arr = np.array([['e1','1'],['e1','2'],
>>> ['e2','1'],['e2','2'],
>>> ['e3','1'],['e3','2'],['e3','3']])
>>> H = hnx.Hypergraph(arr, column_names=['col1','col2'])

Edge and Node Properties

Properties specific to a single edge or node are passed through the
keywords: edge_properties, node_properties, properties.
Properties may be passed as dataframes or dicts.
The first column or index of the dataframe or keys of the dict keys
correspond to the edge and/or node identifiers.
If identifiers are shared among edges and nodes, or are distinct
for edges and nodes, properties may be combined into a single
object and passed to the properties keyword. For example:

	id

	weight

	properties

	e1

	5.0

	{‘type’:’event’}

	e2

	0.52

	{“name”:”owned_by”}

	…

	…

	{…}

	1

	1.2

	{‘color’:’red’}

	2

	.003

	{‘name’:’Fido’,’color’:’brown’}

	3

	1.0

	{}

A properties dictionary should have the format:

dp = {id1 : {prop1:val1, prop2,val2,...}, id2 : ... }

A properties dataframe may be used for nodes and edges sharing ids
but differing in cell properties by adding a level index using 0
for edges and 1 for nodes:

	level

	id

	weight

	properties

	0

	e1

	5.0

	{‘type’:’event’}

	0

	e2

	0.52

	{“name”:”owned_by”}

	…

	…

	…

	{…}

	1

	1.2

	{‘color’:’red’}

	2

	.003

	{‘name’:’Fido’,’color’:’brown’}

	…

	…

	…

	{…}

Weights

The default key for cell and object weights is “weight”. The default value
is 1. Weights may be assigned and/or a new default prescribed in the
constructor using cell_weight_col and cell_weights for incidence pairs,
and using edge_weight_prop, node_weight_prop, weight_prop,
default_edge_weight, and default_node_weight for node and edge weights.

	
adjacency_matrix(s=1, index=False, remove_empty_rows=False)

	The s-adjacency matrix for the hypergraph.

	Parameters:

	
	s (int, optional, default = 1) –

	index (boolean, optional, default = False) – if True, will return the index of ids for rows and columns

	remove_empty_rows (boolean, optional, default = False) –

	Returns:

	
	adjacency_matrix (scipy.sparse.csr.csr_matrix)

	node_index (list) – index of ids for rows and columns

	
auxiliary_matrix(s=1, node=True, index=False)

	The unweighted s-edge or node auxiliary matrix for hypergraph

	Parameters:

	
	s (int, optional, default = 1) –

	node (bool, optional, default = True) – whether to return based on node or edge adjacencies

	Returns:

	
	auxiliary_matrix (scipy.sparse.csr.csr_matrix) – Node/Edge adjacency matrix with empty rows and columns
removed

	index (np.array) – row and column index of userids

	
bipartite()

	Constructs the networkX bipartite graph associated to hypergraph.

	Returns:

	bipartite

	Return type:

	nx.Graph()

Notes

Creates a bipartite networkx graph from hypergraph.
The nodes and (hyper)edges of hypergraph become the nodes of bipartite
graph. For every (hyper)edge e in the hypergraph and node n in e there
is an edge (n,e) in the graph.

	
collapse_edges(name=None, return_equivalence_classes=False, use_reps=None, return_counts=None)

	Constructs a new hypergraph gotten by identifying edges containing the
same nodes

	Parameters:

	
	name (hashable, optional, default = None) –

	return_equivalence_classes (boolean, optional, default = False) – Returns a dictionary of edge equivalence classes keyed by frozen
sets of nodes

	Returns:

	
	new hypergraph (Hypergraph) – Equivalent edges are collapsed to a single edge named by a
representative of the equivalent edges followed by a colon and the
number of edges it represents.

	equivalence_classes (dict) – A dictionary keyed by representative edge names with values equal
to the edges in its equivalence class

Notes

Two edges are identified if their respective elements are the same.
Using this as an equivalence relation, the uids of the edges are
partitioned into equivalence classes.

A single edge from the collapsed edges followed by a colon and the
number of elements in its equivalence class as uid for the new edge

	
collapse_nodes(name=None, return_equivalence_classes=False, use_reps=None, return_counts=None) → Hypergraph

	Constructs a new hypergraph gotten by identifying nodes contained by
the same edges

	Parameters:

	
	name (str, optional, default = None) –

	return_equivalence_classes (boolean, optional, default = False) – Returns a dictionary of node equivalence classes keyed by frozen
sets of edges

	use_reps (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE] Choose a single element from the
collapsed nodes as uid for the new node, otherwise uses a frozen
set of the uids of nodes in the equivalence class. If use_reps is True the new nodes have uids given by a
tuple of the rep and the count

	return_counts (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Returns:

	new hypergraph

	Return type:

	Hypergraph

Notes

Two nodes are identified if their respective memberships are the same.
Using this as an equivalence relation, the uids of the nodes are
partitioned into equivalence classes. A single member of the
equivalence class is chosen to represent the class followed by the
number of members of the class.

Example

>>> data = {'E1': ('a', 'b'), 'E2': ('a', 'b')}))
>>> h = Hypergraph(data)
>>> h.collapse_nodes().incidence_dict
{'E1': ['a: 2'], 'E2': ['a: 2']}

	
collapse_nodes_and_edges(name=None, return_equivalence_classes=False, use_reps=None, return_counts=None)

	Returns a new hypergraph by collapsing nodes and edges.

	Parameters:

	
	name (str, optional, default = None) –

	return_equivalence_classes (boolean, optional, default = False) – Returns a dictionary of edge equivalence classes keyed by frozen
sets of nodes

	use_reps (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE] Choose a single element from the collapsed elements as a
representative. If use_reps is True, the new elements are keyed by a tuple of the
rep and the count.

	return_counts (boolean, optional, default = None) – [DEPRECATED; WILL BE REMOVED IN NEXT RELEASE]

	Returns:

	new hypergraph

	Return type:

	Hypergraph

Notes

Collapses the Nodes and Edges of EntitySets. Two nodes(edges) are
duplicates if their respective memberships(elements) are the same.
Using this as an equivalence relation, the uids of the nodes(edges)
are partitioned into equivalence classes. A single member of the
equivalence class is chosen to represent the class followed by the
number of members of the class.

Example

>>> data = {'E1': ('a', 'b'), 'E2': ('a', 'b')}
>>> h = Hypergraph(data)
>>> h.incidence_dict
{'E1': ['a', 'b'], 'E2': ['a', 'b']}
>>> h.collapse_nodes_and_edges().incidence_dict
{'E1: 2': ['a: 2']}

	
component_subgraphs(return_singletons=False, name=None)

	Same as s_components_subgraphs() with s=1. Returns iterator.

See also

s_component_subgraphs

	
components(edges=False)

	Same as s_connected_components() with s=1, but nodes are returned
by default. Return iterator.

See also

s_connected_components

	
connected_component_subgraphs(return_singletons=True, name=None)

	Same as s_component_subgraphs() with s=1. Returns iterator

See also

s_component_subgraphs

	
connected_components(edges=False)

	Same as s_connected_components() with s=1, but nodes are returned
by default. Return iterator.

See also

s_connected_components

	
property dataframe

	Returns dataframe of incidence pairs and their properties.

	Return type:

	pd.DataFrame

	
degree(node, s=1, max_size=None)

	The number of edges of size s that contain node.

	Parameters:

	
	node (hashable) – identifier for the node.

	s (positive integer, optional, default 1) – smallest size of edge to consider in degree

	max_size (positive integer or None, optional, default = None) – largest size of edge to consider in degree

	Return type:

	int

	
diameter(s=1)

	Returns the length of the longest shortest s-walk between nodes in
hypergraph

	Parameters:

	s (int, optional, default 1) –

	Returns:

	diameter

	Return type:

	int

	Raises:

	HyperNetXError – If hypergraph is not s-edge-connected

Notes

Two nodes are s-adjacent if they share s edges.
Two nodes v_start and v_end are s-walk connected if there is a
sequence of nodes v_start, v_1, v_2, … v_n-1, v_end such that
consecutive nodes are s-adjacent. If the graph is not connected,
an error will be raised.

	
dim(edge)

	Same as size(edge)-1.

	
distance(source, target, s=1)

	Returns the shortest s-walk distance between two nodes in the
hypergraph.

	Parameters:

	
	source (node.uid or node) – a node in the hypergraph

	target (node.uid or node) – a node in the hypergraph

	s (positive integer) – the number of edges

	Returns:

	s-walk distance

	Return type:

	int

See also

edge_distance

Notes

The s-distance is the shortest s-walk length between the nodes.
An s-walk between nodes is a sequence of nodes that pairwise share
at least s edges. The length of the shortest s-walk is 1 less than
the number of nodes in the path sequence.

Uses the networkx shortest_path_length method on the graph
generated by the s-adjacency matrix.

	
dual(name=None, switch_names=True)

	Constructs a new hypergraph with roles of edges and nodes of hypergraph
reversed.

	Parameters:

	
	name (hashable, optional) –

	switch_names (bool, optional, default = True) – reverses edge_col and node_col names
unless edge_col = ‘edges’ and node_col = ‘nodes’

	Return type:

	hypergraph

	
edge_adjacency_matrix(s=1, index=False)

	The s-adjacency matrix for the dual hypergraph.

	Parameters:

	
	s (int, optional, default 1) –

	index (boolean, optional, default = False) – if True, will return the index of ids for rows and columns

	Returns:

	
	edge_adjacency_matrix (scipy.sparse.csr.csr_matrix)

	edge_index (list) – index of ids for rows and columns

Notes

This is also the adjacency matrix for the line graph.
Two edges are s-adjacent if they share at least s nodes.
If remove_zeros is True will return the auxillary matrix

	
edge_diameter(s=1)

	Returns the length of the longest shortest s-walk between edges in
hypergraph

	Parameters:

	s (int, optional, default 1) –

	Returns:

	edge_diameter

	Return type:

	int

	Raises:

	HyperNetXError – If hypergraph is not s-edge-connected

Notes

Two edges are s-adjacent if they share s nodes.
Two nodes e_start and e_end are s-walk connected if there is a
sequence of edges e_start, e_1, e_2, … e_n-1, e_end such that
consecutive edges are s-adjacent. If the graph is not connected, an
error will be raised.

	
edge_diameters(s=1)

	Returns the edge diameters of the s_edge_connected component subgraphs
in hypergraph.

	Parameters:

	s (int, optional, default 1) –

	Returns:

	
	maximum diameter (int)

	list of diameters (list) – List of edge_diameters for s-edge component subgraphs in hypergraph

	list of component (list) – List of the edge uids in the s-edge component subgraphs.

	
edge_distance(source, target, s=1)

	XX TODO: still need to return path and translate into user defined
nodes and edges Returns the shortest s-walk distance between two edges
in the hypergraph.

	Parameters:

	
	source (edge.uid or edge) – an edge in the hypergraph

	target (edge.uid or edge) – an edge in the hypergraph

	s (positive integer) – the number of intersections between pairwise consecutive edges

	TODO (add edge weights) –

	weight (None or string, optional, default = None) – if None then all edges have weight 1. If string then edge attribute
string is used if available.

	Returns:

	s- walk distance – A shortest s-walk is computed as a sequence of edges,
the s-walk distance is the number of edges in the sequence
minus 1. If no such path exists returns np.inf.

	Return type:

	the shortest s-walk edge distance

See also

distance

Notes

The s-distance is the shortest s-walk length between the edges.
An s-walk between edges is a sequence of edges such that
consecutive pairwise edges intersect in at least s nodes. The
length of the shortest s-walk is 1 less than the number of edges
in the path sequence.

Uses the networkx shortest_path_length method on the graph
generated by the s-edge_adjacency matrix.

	
edge_neighbors(edge, s=1)

	The edges in hypergraph which share s nodes(s) with edge.

	Parameters:

	
	edge (hashable or EntitySet) – uid for a edge in hypergraph or the edge Entity

	s (int, list, optional, default = 1) – Minimum number of nodes shared by neighbors edge node.

	Returns:

	List of edge neighbors

	Return type:

	list

	
property edge_props

	Dataframe of edge properties
indexed on edge ids

	Return type:

	pd.DataFrame

	
edge_size_dist()

	Returns the size for each edge

	Return type:

	np.array

	
property edges

	Object associated with self._edges.

	Return type:

	EntitySet

	
classmethod from_bipartite(B, set_names=('edges', 'nodes'), name=None, **kwargs)

	Static method creates a Hypergraph from a bipartite graph.

	Parameters:

	
	B (nx.Graph()) – A networkx bipartite graph. Each node in the graph has a property
‘bipartite’ taking the value of 0 or 1 indicating a 2-coloring of
the graph.

	set_names (iterable of length 2, optional, default = ['edges','nodes']) – Category names assigned to the graph nodes associated to each
bipartite set

	name (hashable, optional) –

	Return type:

	Hypergraph

Notes

A partition for the nodes in a bipartite graph generates a hypergraph.

>>> import networkx as nx
>>> B = nx.Graph()
>>> B.add_nodes_from([1, 2, 3, 4], bipartite=0)
>>> B.add_nodes_from(['a', 'b', 'c'], bipartite=1)
>>> B.add_edges_from([(1, 'a'), (1, 'b'), (2, 'b'), (2, 'c'), /
 (3, 'c'), (4, 'a')])
>>> H = Hypergraph.from_bipartite(B)
>>> H.nodes, H.edges
output: (EntitySet(_:Nodes,[1, 2, 3, 4],{}), /
EntitySet(_:Edges,['b', 'c', 'a'],{}))

	
classmethod from_incidence_dataframe(df, columns=None, rows=None, edge_col: str = 'edges', node_col: str = 'nodes', name=None, fillna=0, transpose=False, transforms=[], key=None, return_only_dataframe=False, **kwargs)

	Create a hypergraph from a Pandas Dataframe object, which has values equal
to the incidence matrix of a hypergraph. Its index will identify the nodes
and its columns will identify its edges.

	Parameters:

	
	df (Pandas.Dataframe) – a real valued dataframe with a single index

	columns ((optional) list, default = None) – restricts df to the columns with headers in this list.

	rows ((optional) list, default = None) – restricts df to the rows indexed by the elements in this list.

	name ((optional) string, default = None) –

	fillna (float, default = 0) – a real value to place in empty cell, all-zero columns will not
generate an edge.

	transpose ((optional) bool, default = False) – option to transpose the dataframe, in this case df.Index will
identify the edges and df.columns will identify the nodes, transpose is
applied before transforms and key

	transforms ((optional) list, default = []) – optional list of transformations to apply to each column,
of the dataframe using pd.DataFrame.apply().
Transformations are applied in the order they are
given (ex. abs). To apply transforms to rows or for additional
functionality, consider transforming df using pandas.DataFrame
methods prior to generating the hypergraph.

	key ((optional) function, default = None) – boolean function to be applied to dataframe. will be applied to
entire dataframe.

	return_only_dataframe ((optional) bool, default = False) – to use the incidence_dataframe with cell_properties or properties, set this
to true and use it as the setsystem in the Hypergraph constructor.

See also

from_numpy_array

	Return type:

	Hypergraph

	
classmethod from_incidence_matrix(M, node_names=None, edge_names=None, node_label='nodes', edge_label='edges', name=None, key=None, **kwargs)

	Same as from_numpy_array.

	
classmethod from_numpy_array(M, node_names=None, edge_names=None, node_label='nodes', edge_label='edges', name=None, key=None, **kwargs)

	Create a hypergraph from a real valued matrix represented as a 2 dimensionsl numpy array.
The matrix is converted to a matrix of 0’s and 1’s so that any truthy cells are converted to 1’s and
all others to 0’s.

	Parameters:

	
	M (real valued array-like object, 2 dimensions) – representing a real valued matrix with rows corresponding to nodes and columns to edges

	node_names (object, array-like, default=None) – List of node names must be the same length as M.shape[0].
If None then the node names correspond to row indices with ‘v’ prepended.

	edge_names (object, array-like, default=None) – List of edge names must have the same length as M.shape[1].
If None then the edge names correspond to column indices with ‘e’ prepended.

	name (hashable) –

	key ((optional) function) – boolean function to be evaluated on each cell of the array,
must be applicable to numpy.array

	Return type:

	Hypergraph

Note

The constructor does not generate empty edges.
All zero columns in M are removed and the names corresponding to these
edges are discarded.

	
get_cell_properties(edge: str, node: str, prop_name: str | None = None) → Any | dict[str, Any]

	Get cell properties on a specified edge and node

	Parameters:

	
	edge (str) – edgeid

	node (str) – nodeid

	prop_name (str, optional) – name of a cell property; if None, all cell properties will be returned

	Returns:

	cell property value if prop_name is provided, otherwise dict of all
cell properties and values

	Return type:

	int or str or dict of {str: any}

	
get_linegraph(s=1, edges=True)

	Creates an ::term::s-linegraph for the Hypergraph.
If edges=True (default)then the edges will be the vertices of the line
graph. Two vertices are connected by an s-line-graph edge if the
corresponding hypergraph edges intersect in at least s hypergraph nodes.
If edges=False, the hypergraph nodes will be the vertices of the line
graph. Two vertices are connected if the nodes they correspond to share
at least s incident hyper edges.

	Parameters:

	
	s (int) – The width of the connections.

	edges (bool, optional, default = True) – Determine if edges or nodes will be the vertices in the linegraph.

	Returns:

	A NetworkX graph.

	Return type:

	nx.Graph

	
get_properties(id, level=None, prop_name=None)

	Returns an object’s specific property or all properties

	Parameters:

	
	id (hashable) – edge or node id

	level (int | None , optional, default = None) – if separate edge and node properties then enter 0 for edges
and 1 for nodes.

	prop_name (str | None, optional, default = None) – if None then all properties associated with the object will be
returned.

	Returns:

	single property or dictionary of properties

	Return type:

	str or dict

	
incidence_dataframe(sort_rows=False, sort_columns=False, cell_weights=True)

	Returns a pandas dataframe for hypergraph indexed by the nodes and
with column headers given by the edge names.

	Parameters:

	
	sort_rows (bool, optional, default =True) – sort rows based on hashable node names

	sort_columns (bool, optional, default =True) – sort columns based on hashable edge names

	cell_weights (bool, optional, default =True) –

	
property incidence_dict

	Dictionary keyed by edge uids with values the uids of nodes in each
edge

	Return type:

	dict

	
incidence_matrix(weights=False, index=False)

	An incidence matrix for the hypergraph indexed by nodes x edges.

	Parameters:

	
	weights (bool, default =False) – If False all nonzero entries are 1.
If True and self.static all nonzero entries are filled by
self.edges.cell_weights dictionary values.

	index (boolean, optional, default = False) – If True return will include a dictionary of node uid : row number
and edge uid : column number

	Returns:

	
	incidence_matrix (scipy.sparse.csr.csr_matrix or np.ndarray)

	row_index (list) – index of node ids for rows

	col_index (list) – index of edge ids for columns

	
is_connected(s=1, edges=False)

	Determines if hypergraph is s-connected.

	Parameters:

	
	s (int, optional, default 1) –

	edges (boolean, optional, default = False) – If True, will determine if s-edge-connected.
For s=1 s-edge-connected is the same as s-connected.

	Returns:

	is_connected

	Return type:

	boolean

Notes

A hypergraph is s node connected if for any two nodes v0,vn
there exists a sequence of nodes v0,v1,v2,…,v(n-1),vn
such that every consecutive pair of nodes v(i),v(i+1)
share at least s edges.

A hypergraph is s edge connected if for any two edges e0,en
there exists a sequence of edges e0,e1,e2,…,e(n-1),en
such that every consecutive pair of edges e(i),e(i+1)
share at least s nodes.

	
neighbors(node, s=1)

	The nodes in hypergraph which share s edge(s) with node.

	Parameters:

	
	node (hashable or EntitySet) – uid for a node in hypergraph or the node Entity

	s (int, list, optional, default = 1) – Minimum number of edges shared by neighbors with node.

	Returns:

	neighbors – s-neighbors share at least s edges in the hypergraph

	Return type:

	list

	
node_diameters(s=1)

	Returns the node diameters of the connected components in hypergraph.

	Parameters:

	
	and (list of the diameters of the s-components) –

	nodes (list of the s-component) –

	
property node_props

	Dataframe of node properties
indexed on node ids

	Return type:

	pd.DataFrame

	
property nodes

	Object associated with self._nodes.

	Return type:

	EntitySet

	
number_of_edges(edgeset=None)

	The number of edges in edgeset belonging to hypergraph.

	Parameters:

	edgeset (an iterable of Entities, optional, default = None) – If None, then return the number of edges in hypergraph.

	Returns:

	number_of_edges

	Return type:

	int

	
number_of_nodes(nodeset=None)

	The number of nodes in nodeset belonging to hypergraph.

	Parameters:

	nodeset (an interable of Entities, optional, default = None) – If None, then return the number of nodes in hypergraph.

	Returns:

	number_of_nodes

	Return type:

	int

	
order()

	The number of nodes in hypergraph.

	Returns:

	order

	Return type:

	int

	
property properties

	Returns dataframe of edge and node properties.

	Return type:

	pd.DataFrame

	
remove(keys, level=None, name=None)

	Creates a new hypergraph with nodes and/or edges indexed by keys
removed. More efficient for creating a restricted hypergraph if the
restricted set is greater than what is being removed.

	Parameters:

	
	keys (list | tuple | set | Hashable) – node and/or edge id(s) to restrict to

	level (None, optional) – Enter 0 to remove edges with ids in keys.
Enter 1 to remove nodes with ids in keys.
If None then all objects in nodes and edges with the id will
be removed.

	name (str, optional) – Name of new hypergraph

	Return type:

	hnx.Hypergraph

	
remove_edges(keys, name=None)

	

	
remove_nodes(keys, name=None)

	

	
remove_singletons(name=None)

	Constructs clone of hypergraph with singleton edges removed.

	Returns:

	new hypergraph

	Return type:

	Hypergraph

	
restrict_to_edges(edges, name=None)

	New hypergraph gotten by restricting to edges

	Parameters:

	edges (Iterable) – edgeids to restrict to

	Return type:

	hnx.Hypergraph

	
restrict_to_nodes(nodes, name=None)

	New hypergraph gotten by restricting to nodes

	Parameters:

	nodes (Iterable) – nodeids to restrict to

	Return type:

	hnx. Hypergraph

	
s_component_subgraphs(s=1, edges=True, return_singletons=False, name=None)

	Returns a generator for the induced subgraphs of s_connected
components. Removes singletons unless return_singletons is set to True.
Computed using s-linegraph generated either by the hypergraph
(edges=True) or its dual (edges = False)

	Parameters:

	
	s (int, optional, default 1) –

	edges (boolean, optional, edges=False) – Determines if edge or node components are desired. Returns
subgraphs equal to the hypergraph restricted to each set of
nodes(edges) in the s-connected components or s-edge-connected
components

	return_singletons (bool, optional) –

	Yields:

	s_component_subgraphs (iterator) – Iterator returns subgraphs generated by the edges (or nodes) in the
s-edge(node) components of hypergraph.

	
s_components(s=1, edges=True, return_singletons=True)

	Same as s_connected_components

See also

s_connected_components

	
s_connected_components(s=1, edges=True, return_singletons=False)

	Returns a generator for the s-edge-connected components
or the s-node-connected components of the hypergraph.

	Parameters:

	
	s (int, optional, default 1) –

	edges (boolean, optional, default = True) – If True will return edge components, if False will return node
components

	return_singletons (bool, optional, default = False) –

Notes

If edges=True, this method returns the s-edge-connected components as
lists of lists of edge uids.
An s-edge-component has the property that for any two edges e1 and e2
there is a sequence of edges starting with e1 and ending with e2
such that pairwise adjacent edges in the sequence intersect in at least
s nodes. If s=1 these are the path components of the hypergraph.

If edges=False this method returns s-node-connected components.
A list of sets of uids of the nodes which are s-walk connected.
Two nodes v1 and v2 are s-walk-connected if there is a
sequence of nodes starting with v1 and ending with v2 such that
pairwise adjacent nodes in the sequence share s edges. If s=1 these
are the path components of the hypergraph.

Example

>>> S = {'A':{1,2,3},'B':{2,3,4},'C':{5,6},'D':{6}}
>>> H = Hypergraph(S)

>>> list(H.s_components(edges=True))
[{'C', 'D'}, {'A', 'B'}]
>>> list(H.s_components(edges=False))
[{1, 2, 3, 4}, {5, 6}]

	Yields:

	s_connected_components (iterator) – Iterator returns sets of uids of the edges (or nodes) in the
s-edge(node) components of hypergraph.

	
set_state(**kwargs)

	Allow state_dict updates from outside of class. Use with caution.

	Parameters:

	**kwargs – key=value pairs to save in state dictionary

	
property shape

	(number of nodes, number of edges)

	Return type:

	tuple

	
singletons()

	Returns a list of singleton edges. A singleton edge is an edge of
size 1 with a node of degree 1.

	Returns:

	singles – A list of edge uids.

	Return type:

	list

	
size(edge, nodeset=None)

	The number of nodes in nodeset that belong to edge.
If nodeset is None then returns the size of edge

	Parameters:

	edge (hashable) – The uid of an edge in the hypergraph

	Returns:

	size

	Return type:

	int

	
toplexes(name=None)

	Returns a simple hypergraph corresponding to self.

Warning

Collapsing is no longer supported inside the toplexes method. Instead
generate a new collapsed hypergraph and compute the toplexes of the
new hypergraph.

	Parameters:

	name (str, optional, default = None) –

 algorithms

algorithms

	algorithms package
	Submodules

	algorithms.contagion module
	Gillespie_SIR()

	Gillespie_SIS()

	collective_contagion()

	contagion_animation()

	discrete_SIR()

	discrete_SIS()

	individual_contagion()

	majority_vote()

	threshold()

	algorithms.generative_models module
	chung_lu_hypergraph()

	dcsbm_hypergraph()

	erdos_renyi_hypergraph()

	algorithms.homology_mod2 module
	Homology and Smith Normal Form
	Homology Mod2

	add_to_column()

	add_to_row()

	betti()

	betti_numbers()

	bkMatrix()

	boundary_group()

	chain_complex()

	homology_basis()

	hypergraph_homology_basis()

	interpret()

	kchainbasis()

	logical_dot()

	logical_matadd()

	logical_matmul()

	matmulreduce()

	reduced_row_echelon_form_mod2()

	smith_normal_form_mod2()

	swap_columns()

	swap_rows()

	algorithms.hypergraph_modularity module
	Hypergraph_Modularity

	conductance()

	dict2part()

	kumar()

	last_step()

	linear()

	majority()

	modularity()

	part2dict()

	strict()

	two_section()

	algorithms.laplacians_clustering module
	Hypergraph Probability Transition Matrices, Laplacians, and Clustering

	get_pi()

	norm_lap()

	prob_trans()

	spec_clus()

	algorithms.s_centrality_measures module
	S-Centrality Measures

	s_betweenness_centrality()

	s_closeness_centrality()

	s_eccentricity()

	s_harmonic_centrality()

	s_harmonic_closeness_centrality()

	Module contents
	Gillespie_SIR()

	Gillespie_SIS()

	add_to_column()

	add_to_row()

	betti()

	betti_numbers()

	bkMatrix()

	boundary_group()

	chain_complex()

	chung_lu_hypergraph()

	collective_contagion()

	contagion_animation()

	dcsbm_hypergraph()

	dict2part()

	discrete_SIR()

	discrete_SIS()

	erdos_renyi_hypergraph()

	get_pi()

	homology_basis()

	hypergraph_homology_basis()

	individual_contagion()

	interpret()

	kchainbasis()

	kumar()

	last_step()

	linear()

	logical_dot()

	logical_matadd()

	logical_matmul()

	majority()

	majority_vote()

	matmulreduce()

	modularity()

	norm_lap()

	part2dict()

	prob_trans()

	reduced_row_echelon_form_mod2()

	s_betweenness_centrality()

	s_closeness_centrality()

	s_eccentricity()

	s_harmonic_centrality()

	s_harmonic_closeness_centrality()

	smith_normal_form_mod2()

	spec_clus()

	strict()

	swap_columns()

	swap_rows()

	threshold()

	two_section()

 algorithms package

algorithms package

Submodules

algorithms.contagion module

	
algorithms.contagion.Gillespie_SIR(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, initial_recovereds=None, rho=None, tmin=0, tmax=inf, **args)

	A continuous-time SIR model for hypergraphs similar to the model in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
implemented for networks in the EoN package by Joel C. Miller
https://epidemicsonnetworks.readthedocs.io/en/latest/

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	initial_recovereds (list or numpy array, default: None) – An iterable of initially recovered node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: float('Inf')) – Time at which the simulation should be terminated if it hasn’t already.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	t, S, I, R – time (t), number of susceptible (S), infected (I), and recovered (R) at each time.

	Return type:

	numpy arrays

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> t, S, I, R = contagion.Gillespie_SIR(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax)

	
algorithms.contagion.Gillespie_SIS(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, rho=None, tmin=0, tmax=inf, return_full_data=False, sim_kwargs=None, **args)

	A continuous-time SIS model for hypergraphs similar to the model in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
implemented for networks in the EoN package by Joel C. Miller
https://epidemicsonnetworks.readthedocs.io/en/latest/

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: 100) – Time at which the simulation should be terminated if it hasn’t already.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	t, S, I – time (t), number of susceptible (S), and infected (I) at each time.

	Return type:

	numpy arrays

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> t, S, I = contagion.Gillespie_SIS(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax)

	
algorithms.contagion.collective_contagion(node, status, edge)

	The collective contagion mechanism described in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034

	Parameters:

	
	node (hashable) – the node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False)

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> collective_contagion(0, status, (0, 1, 2))
 True
>>> collective_contagion(1, status, (0, 1, 2))
 False
>>> collective_contagion(3, status, (0, 1, 2))
 False

	
algorithms.contagion.contagion_animation(fig, H, transition_events, node_state_color_dict, edge_state_color_dict, node_radius=1, fps=1)

	A function to animate discrete-time contagion models for hypergraphs. Currently only supports a circular layout.

	Parameters:

	
	fig (matplotlib Figure object) –

	H (HyperNetX Hypergraph object) –

	transition_events (dictionary) – The dictionary that is output from the discrete_SIS and discrete_SIR functions with return_full_data=True

	node_state_color_dict (dictionary) – Dictionary which specifies the colors of each node state. All node states must be specified.

	edge_state_color_dict (dictionary) – Dictionary with keys that are edge states and values which specify the colors of each edge state
(can specify an alpha parameter). All edge-dependent transition states must be specified
(most common is “I”) and there must be a a default “OFF” setting.

	node_radius (float, default: 1) – The radius of the nodes to draw

	fps (int > 0, default: 1) – Frames per second of the animation

	Return type:

	matplotlib Animation object

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> import matplotlib.pyplot as plt
>>> from IPython.display import HTML
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> dt = 0.1
>>> transition_events = contagion.discrete_SIS(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax, dt=dt, return_full_data=True)
>>> node_state_color_dict = {"S":"green", "I":"red", "R":"blue"}
>>> edge_state_color_dict = {"S":(0, 1, 0, 0.3), "I":(1, 0, 0, 0.3), "R":(0, 0, 1, 0.3), "OFF": (1, 1, 1, 0)}
>>> fps = 1
>>> fig = plt.figure()
>>> animation = contagion.contagion_animation(fig, H, transition_events, node_state_color_dict, edge_state_color_dict, node_radius=1, fps=fps)
>>> HTML(animation.to_jshtml())

	
algorithms.contagion.discrete_SIR(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, initial_recovereds=None, rho=None, tmin=0, tmax=inf, dt=1.0, return_full_data=False, **args)

	A discrete-time SIR model for hypergraphs similar to the construction described in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
“Simplicial models of social contagion” by Iacopini et al.
https://doi.org/10.1038/s41467-019-10431-6

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	initial_recovereds (list or numpy array, default: None) – An iterable of initially recovered node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: float('Inf')) – Time at which the simulation should be terminated if it hasn’t already.

	dt (float > 0, default: 1.0) – Step forward in time that the simulation takes at each step.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	
	if return_full_data –

	dictionary
	Time as the keys and events that happen as the values.

	else –

	t, S, I, Rnumpy arrays
	time (t), number of susceptible (S), infected (I), and recovered (R) at each time.

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> dt = 0.1
>>> t, S, I, R = contagion.discrete_SIR(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax, dt=dt)

	
algorithms.contagion.discrete_SIS(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, rho=None, tmin=0, tmax=100, dt=1.0, return_full_data=False, **args)

	A discrete-time SIS model for hypergraphs as implemented in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
“Simplicial models of social contagion” by Iacopini et al.
https://doi.org/10.1038/s41467-019-10431-6

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: 100) – Time at which the simulation should be terminated if it hasn’t already.

	dt (float > 0, default: 1.0) – Step forward in time that the simulation takes at each step.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	
	if return_full_data –

	dictionary
	Time as the keys and events that happen as the values.

	else –

	t, S, Inumpy arrays
	time (t), number of susceptible (S), and infected (I) at each time.

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> dt = 0.1
>>> t, S, I = contagion.discrete_SIS(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax, dt=dt)

	
algorithms.contagion.individual_contagion(node, status, edge)

	The individual contagion mechanism described in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034

	Parameters:

	
	node (hashable) – The node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False)

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> individual_contagion(0, status, (0, 1, 3))
 True
>>> individual_contagion(1, status, (0, 1, 2))
 False
>>> collective_contagion(3, status, (0, 3, 4))
 False

	
algorithms.contagion.majority_vote(node, status, edge)

	The majority vote contagion mechanism. If a majority of neighbors are contagious,
it is possible for an individual to change their opinion. If opinions are divided equally,
choose randomly.

	Parameters:

	
	node (hashable) – The node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> majority_vote(0, status, (0, 1, 2))
 True
>>> majority_vote(0, status, (0, 1, 2, 3))
 True
>>> majority_vote(1, status, (0, 1, 2))
 False
>>> majority_vote(3, status, (0, 1, 2))
 False

	
algorithms.contagion.threshold(node, status, edge, tau=0.1)

	The threshold contagion mechanism

	Parameters:

	
	node (hashable) – The node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False)

	tau (float between 0 and 1, default: 0.1) – The fraction of nodes in an edge that must be infected for the edge to be able to transmit to the node

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> threshold(0, status, (0, 2, 3, 4), tau=0.2)
 True
>>> threshold(0, status, (0, 2, 3, 4), tau=0.5)
 False
>>> threshold(3, status, (1, 2, 3), tau=1)
 False

algorithms.generative_models module

	
algorithms.generative_models.chung_lu_hypergraph(k1, k2)

	A function to generate an extension of Chung-Lu hypergraph as implemented by Mirah Shi and described for
bipartite networks by Aksoy et al. in https://doi.org/10.1093/comnet/cnx001

	Parameters:

	
	k1 (dictionary) – This a dictionary where the keys are node ids and the values are node degrees.

	k2 (dictionary) – This a dictionary where the keys are edge ids and the values are edge degrees also known as edge sizes.

	Return type:

	HyperNetX Hypergraph object

Notes

The sums of k1 and k2 should be roughly the same. If they are not the same, this function returns a warning but still runs.
The output currently is a static Hypergraph object. Dynamic hypergraphs are not currently supported.

Example:

>>> import hypernetx.algorithms.generative_models as gm
>>> import random
>>> n = 100
>>> k1 = {i : random.randint(1, 100) for i in range(n)}
>>> k2 = {i : sorted(k1.values())[i] for i in range(n)}
>>> H = gm.chung_lu_hypergraph(k1, k2)

	
algorithms.generative_models.dcsbm_hypergraph(k1, k2, g1, g2, omega)

	A function to generate an extension of DCSBM hypergraph as implemented by Mirah Shi and described for
bipartite networks by Larremore et al. in https://doi.org/10.1103/PhysRevE.90.012805

	Parameters:

	
	k1 (dictionary) – This a dictionary where the keys are node ids and the values are node degrees.

	k2 (dictionary) – This a dictionary where the keys are edge ids and the values are edge degrees also known as edge sizes.

	g1 (dictionary) – This a dictionary where the keys are node ids and the values are the group ids to which the node belongs.
The keys must match the keys of k1.

	g2 (dictionary) – This a dictionary where the keys are edge ids and the values are the group ids to which the edge belongs.
The keys must match the keys of k2.

	omega (2D numpy array) – This is a matrix with entries which specify the number of edges between a given node community and edge community.
The number of rows must match the number of node communities and the number of columns
must match the number of edge communities.

	Return type:

	HyperNetX Hypergraph object

Notes

The sums of k1 and k2 should be the same. If they are not the same, this function returns a warning but still runs.
The sum of k1 (and k2) and omega should be the same. If they are not the same, this function returns a warning
but still runs and the number of entries in the incidence matrix is determined by the omega matrix.

The output currently is a static Hypergraph object. Dynamic hypergraphs are not currently supported.

Example:

>>> n = 100
>>> k1 = {i : random.randint(1, 100) for i in range(n)}
>>> k2 = {i : sorted(k1.values())[i] for i in range(n)}
>>> g1 = {i : random.choice([0, 1]) for i in range(n)}
>>> g2 = {i : random.choice([0, 1]) for i in range(n)}
>>> omega = np.array([[100, 10], [10, 100]])
>>> H = gm.dcsbm_hypergraph(k1, k2, g1, g2, omega)

	
algorithms.generative_models.erdos_renyi_hypergraph(n, m, p, node_labels=None, edge_labels=None)

	A function to generate an Erdos-Renyi hypergraph as implemented by Mirah Shi and described for
bipartite networks by Aksoy et al. in https://doi.org/10.1093/comnet/cnx001

	Parameters:

	
	n (int) – Number of nodes

	m (int) – Number of edges

	p (float) – The probability that a bipartite edge is created

	node_labels (list, default=None) – Vertex labels

	edge_labels (list, default=None) – Hyperedge labels

	Return type:

	HyperNetX Hypergraph object

Example:

>>> import hypernetx.algorithms.generative_models as gm
>>> n = 1000
>>> m = n
>>> p = 0.01
>>> H = gm.erdos_renyi_hypergraph(n, m, p)

algorithms.homology_mod2 module

Homology and Smith Normal Form

The purpose of computing the Homology groups for data generated
hypergraphs is to identify data sources that correspond to interesting
features in the topology of the hypergraph.

The elements of one of these Homology groups are generated by k
dimensional cycles of relationships in the original data that are not
bound together by higher order relationships. Ideally, we want the
briefest description of these cycles; we want a minimal set of
relationships exhibiting interesting cyclic behavior. This minimal set
will be a bases for the Homology group.

The cyclic relationships in the data are discovered using a boundary
map represented as a matrix. To discover the bases we compute the
Smith Normal Form of the boundary map.

Homology Mod2

This module computes the homology groups for data represented as an
abstract simplicial complex with chain groups ${C_k}$ and Z_2 additions.
The boundary matrices are represented as rectangular matrices over Z_2.
These matrices are diagonalized and represented in Smith
Normal Form. The kernel and image bases are computed and the Betti
numbers and homology bases are returned.

Methods for obtaining SNF for Z/2Z are based on Ferrario’s work:
http://www.dlfer.xyz/post/2016-10-27-smith-normal-form/

	
algorithms.homology_mod2.add_to_column(M, i, j)

	Replaces column i (of M) with logical xor between column i and j

	Parameters:

	
	M (np.array) – matrix

	i (int) – index of column being altered

	j (int) – index of column being added to altered

	Returns:

	N

	Return type:

	np.array

	
algorithms.homology_mod2.add_to_row(M, i, j)

	Replaces row i with logical xor between row i and j

	Parameters:

	
	M (np.array) –

	i (int) – index of row being altered

	j (int) – index of row being added to altered

	Returns:

	N

	Return type:

	np.array

	
algorithms.homology_mod2.betti(bd, k=None)

	Generate the kth-betti numbers for a chain complex with boundary
matrices given by bd

	Parameters:

	
	bd (dict of k-boundary matrices keyed on dimension of domain) –

	k (int, list or tuple, optional, default=None) – list must be min value and max value of k values inclusive
if None, then all betti numbers for dimensions of existing cells will be
computed.

	Returns:

	betti – Description

	Return type:

	dict

	
algorithms.homology_mod2.betti_numbers(h, k=None)

	Return the kth betti numbers for the simplicial homology of the ASC
associated to h

	Parameters:

	
	h (hnx.Hypergraph) – Hypergraph to compute the betti numbers from

	k (int or list, optional, default=None) – list must be min value and max value of k values inclusive
if None, then all betti numbers for dimensions of existing cells will be
computed.

	Returns:

	betti – A dictionary of betti numbers keyed by dimension

	Return type:

	dict

	
algorithms.homology_mod2.bkMatrix(km1basis, kbasis)

	Compute the boundary map from C_{k-1}-basis to C_k basis with
respect to Z_2

	Parameters:

	
	km1basis (indexable iterable) – Ordered list of $k-1$ dimensional cell

	kbasis (indexable iterable) – Ordered list of k dimensional cells

	Returns:

	bk – boundary matrix in Z_2 stored as boolean

	Return type:

	np.array

	
algorithms.homology_mod2.boundary_group(image_basis)

	Returns a csr_matrix with rows corresponding to the elements of the
group generated by image basis over $mathbb{Z}_2$

	Parameters:

	image_basis (numpy.ndarray or scipy.sparse.csr_matrix) – 2d-array of basis elements

	Return type:

	scipy.sparse.csr_matrix

	
algorithms.homology_mod2.chain_complex(h, k=None)

	Compute the k-chains and k-boundary maps required to compute homology
for all values in k

	Parameters:

	
	h (hnx.Hypergraph) –

	k (int or list of length 2, optional, default=None) – k must be an integer greater than 0 or a list of
length 2 indicating min and max dimensions to be
computed. eg. if k = [1,2] then 0,1,2,3-chains
and boundary maps for k=1,2,3 will be returned,
if None than k = [1,max dimension of edge in h]

	Returns:

	C, bd – C is a dictionary of lists
bd is a dictionary of numpy arrays

	Return type:

	dict

	
algorithms.homology_mod2.homology_basis(bd, k=None, boundary=False, **kwargs)

	Compute a basis for the kth-simplicial homology group, H_k, defined by a
chain complex C with boundary maps given by bd $= {k:partial_k }$

	Parameters:

	
	bd (dict) – dict of boundary matrices on k-chains to k-1 chains keyed on k
if krange is a tuple then all boundary matrices k in [krange[0],..,krange[1]]
inclusive must be in the dictionary

	k (int or list of ints, optional, default=None) – k must be a positive integer or a list of
2 integers indicating min and max dimensions to be
computed, if none given all homology groups will be computed from
available boundary matrices in bd

	boundary (bool) – option to return a basis for the boundary group from each dimension.
Needed to compute the shortest generators in the homology group.

	Returns:

	
	basis (dict) – dict of generators as 0-1 tuples keyed by dim
basis for dimension k will be returned only if bd[k] and bd[k+1] have
been provided.

	im (dict) – dict of boundary group generators keyed by dim

	
algorithms.homology_mod2.hypergraph_homology_basis(h, k=None, shortest=False, interpreted=True)

	Computes the kth-homology groups mod 2 for the ASC
associated with the hypergraph h for k in krange inclusive

	Parameters:

	
	h (hnx.Hypergraph) –

	k (int or list of length 2, optional, default = None) – k must be an integer greater than 0 or a list of
length 2 indicating min and max dimensions to be
computed

	shortest (bool, optional, default=False) – option to look for shortest representative for each coset in the
homology group, only good for relatively small examples

	interpreted (bool, optional, default = True) – if True will return an explicit basis in terms of the k-chains

	Returns:

	
	basis (list) – list of generators as k-chains as boolean vectors

	interpreted_basis – lists of kchains in basis

	
algorithms.homology_mod2.interpret(Ck, arr, labels=None)

	Returns the data as represented in Ck associated with the arr

	Parameters:

	
	Ck (list) – a list of k-cells being referenced by arr

	arr (np.array) – array of 0-1 vectors

	labels (dict, optional) – dictionary of labels to associate to the nodes in the cells

	Returns:

	list of k-cells referenced by data in Ck

	Return type:

	list

	
algorithms.homology_mod2.kchainbasis(h, k)

	Compute the set of k dimensional cells in the abstract simplicial
complex associated with the hypergraph.

	Parameters:

	
	h (hnx.Hypergraph) –

	k (int) – dimension of cell

	Returns:

	an ordered list of kchains represented as tuples of length k+1

	Return type:

	list

See also

hnx.hypergraph.toplexes

Notes

	Method works best if h is simple [Berge], i.e. no edge contains another and there are no duplicate edges (toplexes).

	Hypergraph node uids must be sortable.

	
algorithms.homology_mod2.logical_dot(ar1, ar2)

	Returns the boolean equivalent of the dot product mod 2 on two 1-d arrays of
the same length.

	Parameters:

	
	ar1 (numpy.ndarray) – 1-d array

	ar2 (numpy.ndarray) – 1-d array

	Returns:

	boolean value associated with dot product mod 2

	Return type:

	bool

	Raises:

	HyperNetXError – If arrays are not of the same length an error will be raised.

	
algorithms.homology_mod2.logical_matadd(mat1, mat2)

	Returns the boolean equivalent of matrix addition mod 2 on two
binary arrays stored as type boolean

	Parameters:

	
	mat1 (np.ndarray) – 2-d array of boolean values

	mat2 (np.ndarray) – 2-d array of boolean values

	Returns:

	mat – boolean matrix equivalent to the mod 2 matrix addition of the
matrices as matrices over Z/2Z

	Return type:

	np.ndarray

	Raises:

	HyperNetXError – If dimensions are not equal an error will be raised.

	
algorithms.homology_mod2.logical_matmul(mat1, mat2)

	Returns the boolean equivalent of matrix multiplication mod 2 on two
binary arrays stored as type boolean

	Parameters:

	
	mat1 (np.ndarray) – 2-d array of boolean values

	mat2 (np.ndarray) – 2-d array of boolean values

	Returns:

	mat – boolean matrix equivalent to the mod 2 matrix multiplication of the
matrices as matrices over Z/2Z

	Return type:

	np.ndarray

	Raises:

	HyperNetXError – If inner dimensions are not equal an error will be raised.

	
algorithms.homology_mod2.matmulreduce(arr, reverse=False)

	Recursively applies a ‘logical multiplication’ to a list of boolean arrays.

For arr = [arr[0],arr[1],arr[2]…arr[n]] returns product arr[0]arr[1]…arr[n]
If reverse = True, returns product arr[n]arr[n-1]…arr[0]

	Parameters:

	
	arr (list of np.array) – list of nxm matrices represented as np.array

	reverse (bool, optional) – order to multiply the matrices

	Returns:

	P – Product of matrices in the list

	Return type:

	np.array

	
algorithms.homology_mod2.reduced_row_echelon_form_mod2(M)

	Computes the invertible transformation matrices needed to compute
the reduced row echelon form of M modulo 2

	Parameters:

	M (np.array) – a rectangular matrix with elements in Z_2

	Returns:

	L, S, Linv – LM = S where S is the reduced echelon form of M
and M = LinvS

	Return type:

	np.arrays

	
algorithms.homology_mod2.smith_normal_form_mod2(M)

	Computes the invertible transformation matrices needed to compute the
Smith Normal Form of M modulo 2

	Parameters:

	
	M (np.array) – a rectangular matrix with data type bool

	track (bool) – if track=True will print out the transformation as Z/2Z matrix as it
discovers L[i] and R[j]

	Returns:

	L, R, S, Linv – LMR = S is the Smith Normal Form of the matrix M.

	Return type:

	np.arrays

Note

Given a mxn matrix M with
entries in Z_2 we start with the equation: $L M R = S$, where
$L = I_m$, and $R=I_n$ are identity matrices and $S = M$. We
repeatedly apply actions to the left and right side of the equation
to transform S into a diagonal matrix.
For each action applied to the left side we apply its inverse
action to the right side of I_m to generate L^{-1}.
Finally we verify:
$L M R = S$ and $LLinv = I_m$.

	
algorithms.homology_mod2.swap_columns(i, j, *args)

	Swaps ith and jth column of each matrix in args
Returns a list of new matrices

	Parameters:

	
	i (int) –

	j (int) –

	args (np.arrays) –

	Returns:

	list of copies of args with ith and jth row swapped

	Return type:

	list

	
algorithms.homology_mod2.swap_rows(i, j, *args)

	Swaps ith and jth row of each matrix in args
Returns a list of new matrices

	Parameters:

	
	i (int) –

	j (int) –

	args (np.arrays) –

	Returns:

	list of copies of args with ith and jth row swapped

	Return type:

	list

algorithms.hypergraph_modularity module

Hypergraph_Modularity

Modularity and clustering for hypergraphs using HyperNetX.
Adapted from F. Théberge’s GitHub repository: Hypergraph Clustering [https://github.com/ftheberge/Hypergraph_Clustering]
See Tutorial 13 in the tutorials folder for library usage.

References

[1]
(1,2,3,4)
Kumar T., Vaidyanathan S., Ananthapadmanabhan H., Parthasarathy S. and Ravindran B. “A New Measure of Modularity in Hypergraphs: Theoretical Insights and Implications for Effective Clustering”. In: Cherifi H., Gaito S., Mendes J., Moro E., Rocha L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_24

[2]
(1,2,3,4,5,6,7,8,9,10,11,12)
Kamiński B., Prałat P. and Théberge F. “Community Detection Algorithm Using Hypergraph Modularity”. In: Benito R.M., Cherifi C., Cherifi H., Moro E., Rocha L.M., Sales-Pardo M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020. Studies in Computational Intelligence, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-65347-7_13

[3]
(1,2,3,4)
Kamiński B., Poulin V., Prałat P., Szufel P. and Théberge F. “Clustering via hypergraph modularity”, Plos ONE 2019, https://doi.org/10.1371/journal.pone.0224307

	
algorithms.hypergraph_modularity.conductance(H, A)

	Computes conductance [4] of hypergraph HG with respect to partition A.

	Parameters:

	
	H (Hypergraph) – The hypergraph

	A (set) – Partition of the vertices in H

	Returns:

	The conductance function for partition A on H

	Return type:

	float

	
algorithms.hypergraph_modularity.dict2part(D)

	Given a dictionary mapping the part for each vertex, return a partition as a list of sets; inverse function to part2dict

	Parameters:

	D (dict) – Dictionary keyed by vertices with values equal to integer
index of the partition the vertex belongs to

	Returns:

	List of sets; one set for each part in the partition

	Return type:

	list

	
algorithms.hypergraph_modularity.kumar(HG, delta=0.01, verbose=False)

	Compute a partition of the vertices in hypergraph HG as per Kumar’s algorithm [1]

	Parameters:

	
	HG (Hypergraph) –

	delta (float, optional) – convergence stopping criterion

	Returns:

	A partition of the vertices in HG

	Return type:

	list of sets

	
algorithms.hypergraph_modularity.last_step(HG, A, wdc=<function linear>, delta=0.01, verbose=False)

	Given some initial partition L, compute a new partition of the vertices in HG as per Last-Step algorithm [2]

Note

This is a very simple algorithm that tries moving nodes between communities to improve hypergraph modularity.
It requires an initial non-trivial partition which can be obtained for example via graph clustering on the 2-section of HG,
or via Kumar’s algorithm.

	Parameters:

	
	HG (Hypergraph) –

	L (list of sets) – some initial partition of the vertices in HG

	wdc (func, optional) – Hyperparameter for hypergraph modularity [2]

	delta (float, optional) – convergence stopping criterion

	verbose (boolean, optional) – If set, also returns progress after each pass through the vertices

	Returns:

	A new partition for the vertices in HG

	Return type:

	list of sets

	
algorithms.hypergraph_modularity.linear(d, c)

	Hyperparameter for hypergraph modularity [2] for d-edge with c vertices in the majority class.
This is the default choice for modularity() and last_step() functions.

	Parameters:

	
	d (int) – Number of vertices in an edge

	c (int) – Number of vertices in the majority class

	Returns:

	c/d if c>d/2 else 0

	Return type:

	float

	
algorithms.hypergraph_modularity.majority(d, c)

	Hyperparameter for hypergraph modularity [2] for d-edge with c vertices in the majority class.
This corresponds to the majority rule [3]

	Parameters:

	
	d (int) – Number of vertices in an edge

	c (int) – Number of vertices in the majority class

	Returns:

	1 if c>d/2 else 0

	Return type:

	bool

	
algorithms.hypergraph_modularity.modularity(HG, A, wdc=<function linear>)

	Computes modularity of hypergraph HG with respect to partition A.

	Parameters:

	
	HG (Hypergraph) – The hypergraph with some precomputed attributes via: precompute_attributes(HG)

	A (list of sets) – Partition of the vertices in HG

	wdc (func, optional) – Hyperparameter for hypergraph modularity [2]

Note

For ‘wdc’, any function of the format w(d,c) that returns 0 when c <= d/2 and value in [0,1] otherwise can be used.
Default is ‘linear’; other supplied choices are ‘majority’ and ‘strict’.

	Returns:

	The modularity function for partition A on HG

	Return type:

	float

	
algorithms.hypergraph_modularity.part2dict(A)

	Given a partition (list of sets), returns a dictionary mapping the part for each vertex; inverse function
to dict2part

	Parameters:

	A (list of sets) – a partition of the vertices

	Returns:

	a dictionary with {vertex: partition index}

	Return type:

	dict

	
algorithms.hypergraph_modularity.strict(d, c)

	Hyperparameter for hypergraph modularity [2] for d-edge with c vertices in the majority class.
This corresponds to the strict rule [3]

	Parameters:

	
	d (int) – Number of vertices in an edge

	c (int) – Number of vertices in the majority class

	Returns:

	1 if c==d else 0

	Return type:

	bool

	
algorithms.hypergraph_modularity.two_section(HG)

	Creates a random walk based [1] 2-section igraph Graph with transition weights defined by the
weights of the hyperedges.

	Parameters:

	HG (Hypergraph) –

	Returns:

	The 2-section graph built from HG

	Return type:

	igraph.Graph

algorithms.laplacians_clustering module

Hypergraph Probability Transition Matrices, Laplacians, and Clustering

We contruct hypergraph random walks utilizing optional “edge-dependent vertex weights”, which are
weights associated with each vertex-hyperedge pair (i.e. cell weights on the incidence matrix).
The probability transition matrix of this random walk is used to construct a normalized Laplacian
matrix for the hypergraph. That normalized Laplacian then serves as the input for a spectral clustering
algorithm. This spectral clustering algorithm, as well as the normalized Laplacian and other details of
this methodology are described in

K. Hayashi, S. Aksoy, C. Park, H. Park, “Hypergraph random walks, Laplacians, and clustering”,
Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020.
https://doi.org/10.1145/3340531.3412034

Please direct any inquiries concerning the clustering module to Sinan Aksoy, sinan.aksoy@pnnl.gov

	
algorithms.laplacians_clustering.get_pi(P)

	Returns the eigenvector corresponding to the largest eigenvalue (in magnitude),
normalized so its entries sum to 1. Intended for the probability transition matrix
of a random walk on a (connected) hypergraph, in which case the output can
be interpreted as the stationary distribution.

	Parameters:

	P (csr matrix) – Probability transition matrix

	Returns:

	pi – Stationary distribution of random walk defined by P

	Return type:

	numpy.ndarray

	
algorithms.laplacians_clustering.norm_lap(H, weights=False, index=True)

	Normalized Laplacian matrix of the hypergraph. Symmetrizes the probability transition
matrix of a hypergraph random walk using the stationary distribution, using the digraph
Laplacian defined in:

Chung, Fan. “Laplacians and the Cheeger inequality for directed graphs.”
Annals of Combinatorics 9.1 (2005): 1-19.

and studied in the context of hypergraphs in:

Hayashi, K., Aksoy, S. G., Park, C. H., & Park, H.
Hypergraph random walks, laplacians, and clustering.
In Proceedings of CIKM 2020, (2020): 495-504.

	Parameters:

	
	H (hnx.Hypergraph) – The hypergraph must be connected, meaning there is a path linking any two
vertices

	weight (bool, optional, default : False) – Uses cell_weights, if False, uniform weights are utilized.

	index (bool, optional) – Whether to return matrix-index to vertex-label mapping

	Returns:

	
	P (scipy.sparse.csr.csr_matrix) – Probability transition matrix of the random walk on the hypergraph

	id (list) – contains list of index of node ids for rows

	
algorithms.laplacians_clustering.prob_trans(H, weights=False, index=True, check_connected=True)

	The probability transition matrix of a random walk on the vertices of a hypergraph.
At each step in the walk, the next vertex is chosen by:

	Selecting a hyperedge e containing the vertex with probability proportional to w(e)

	Selecting a vertex v within e with probability proportional to a gamma(v,e)

If weights are not specified, then all weights are uniform and the walk is equivalent
to a simple random walk.
If weights are specified, the hyperedge weights w(e) are determined from the weights
gamma(v,e).

	Parameters:

	
	H (hnx.Hypergraph) – The hypergraph must be connected, meaning there is a path linking any two
vertices

	weights (bool, optional, default : False) – Use the cell_weights associated with the hypergraph
If False, uniform weights are utilized.

	index (bool, optional) – Whether to return matrix index to vertex label mapping

	Returns:

	
	P (scipy.sparse.csr.csr_matrix) – Probability transition matrix of the random walk on the hypergraph

	index (list) – contains list of index of node ids for rows

	
algorithms.laplacians_clustering.spec_clus(H, k, existing_lap=None, weights=False)

	Hypergraph spectral clustering of the vertex set into k disjoint clusters
using the normalized hypergraph Laplacian. Equivalent to the “RDC-Spec”
Algorithm 1 in:

Hayashi, K., Aksoy, S. G., Park, C. H., & Park, H.
Hypergraph random walks, laplacians, and clustering.
In Proceedings of CIKM 2020, (2020): 495-504.

	Parameters:

	
	H (hnx.Hypergraph) – The hypergraph must be connected, meaning there is a path linking any two
vertices

	k (int) – Number of clusters

	existing_lap (csr matrix, optional) – Whether to use an existing Laplacian; otherwise, normalized hypergraph Laplacian
will be utilized

	weights (bool, optional) – Use the cell_weights of the hypergraph. If False uniform weights are used.

	Returns:

	clusters – Vertex cluster dictionary, keyed by integers 0,…,k-1, with lists of
vertices as values.

	Return type:

	dict

algorithms.s_centrality_measures module

S-Centrality Measures

We generalize graph metrics to s-metrics for a hypergraph by using its s-connected
components. This is accomplished by computing the s edge-adjacency matrix and
constructing the corresponding graph of the matrix. We then use existing graph metrics
on this representation of the hypergraph. In essence we construct an s-line graph
corresponding to the hypergraph on which to apply our methods.

S-Metrics for hypergraphs are discussed in depth in:
Aksoy, S.G., Joslyn, C., Ortiz Marrero, C. et al. Hypernetwork science via high-order hypergraph walks.
EPJ Data Sci. 9, 16 (2020). https://doi.org/10.1140/epjds/s13688-020-00231-0

	
algorithms.s_centrality_measures.s_betweenness_centrality(H, s=1, edges=True, normalized=True, return_singletons=True)

	A centrality measure for an s-edge(node) subgraph of H based on shortest paths.
Equals the betweenness centrality of vertices in the edge(node) s-linegraph.

In a graph (2-uniform hypergraph) the betweenness centrality of a vertex v
is the ratio of the number of non-trivial shortest paths between any pair of
vertices in the graph that pass through v divided by the total number of
non-trivial shortest paths in the graph.

The centrality of edge to all shortest s-edge paths
V = the set of vertices in the linegraph.
$sigma(s,t)$ = the number of shortest paths between vertices s and t.
$sigma(s,t|v)$ = the number of those paths that pass through vertex v.

\[c_B(v) = \sum_{s \neq t \in V} \frac{\sigma(s, t|v)}{\sigma(s,t)}\]

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int) – s connectedness requirement

	edges (bool, optional) – determines if edge or node linegraph

	normalized – bool, default=False,
If true the betweenness values are normalized by 2/((n-1)(n-2)),
where n is the number of edges in H

	return_singletons (bool, optional) – if False will ignore singleton components of linegraph

	Returns:

	A dictionary of s-betweenness centrality value of the edges.

	Return type:

	dict

	
algorithms.s_centrality_measures.s_closeness_centrality(H, s=1, edges=True, return_singletons=True, source=None)

	In a connected component the reciprocal of the sum of the distance between an
edge(node) and all other edges(nodes) in the component times the number of edges(nodes)
in the component minus 1.

V = the set of vertices in the linegraph.
$n = |V|$
d = shortest path distance

\[C(u) = \frac{n - 1}{\sum_{v \neq u \in V} d(v, u)}\]

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int, optional) –

	edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

	return_singletons (bool, optional) – Indicates if method should return values for singleton components.

	source (str, optional) – Identifier of node or edge of interest for computing centrality

	Returns:

	returns the s-closeness centrality value of the edges(nodes).
If source=None a dictionary of values for each s-edge in H is returned.
If source then a single value is returned.

	Return type:

	dict or float

	
algorithms.s_centrality_measures.s_eccentricity(H, s=1, edges=True, source=None, return_singletons=True)

	The length of the longest shortest path from a vertex u to every other vertex in
the s-linegraph.
V = set of vertices in the s-linegraph
d = shortest path distance

\[\text{s-ecc}(u) = \text{max}\{d(u,v): v \in V\}\]

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int, optional) –

	edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

	return_singletons (bool, optional) – Indicates if method should return values for singleton components.

	source (str, optional) – Identifier of node or edge of interest for computing centrality

	Returns:

	returns the s-eccentricity value of the edges(nodes).
If source=None a dictionary of values for each s-edge in H is returned.
If source then a single value is returned.
If the s-linegraph is disconnected, np.inf is returned.

	Return type:

	dict or float

	
algorithms.s_centrality_measures.s_harmonic_centrality(H, s=1, edges=True, source=None, normalized=False, return_singletons=True)

	A centrality measure for an s-edge subgraph of H. A value equal to 1 means the s-edge
intersects every other s-edge in H. All values range between 0 and 1.
Edges of size less than s return 0. If H contains only one s-edge a 0 is returned.

The denormalized reciprocal of the harmonic mean of all distances from u to all other vertices.
V = the set of vertices in the linegraph.
d = shortest path distance

\[C(u) = \sum_{v \neq u \in V} \frac{1}{d(v, u)}\]

Normalized this becomes:
$$C(u) = sum_{v neq u in V} frac{1}{d(v, u)}cdotfrac{2}{(n-1)(n-2)}$$
where n is the number vertices.

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int, optional) –

	edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

	return_singletons (bool, optional) – Indicates if method should return values for singleton components.

	source (str, optional) – Identifier of node or edge of interest for computing centrality

	Returns:

	returns the s-harmonic closeness centrality value of the edges, a number between 0 and 1 inclusive.
If source=None a dictionary of values for each s-edge in H is returned.
If source then a single value is returned.

	Return type:

	dict or float

	
algorithms.s_centrality_measures.s_harmonic_closeness_centrality(H, s=1, edge=None)

	

Module contents

	
algorithms.Gillespie_SIR(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, initial_recovereds=None, rho=None, tmin=0, tmax=inf, **args)

	A continuous-time SIR model for hypergraphs similar to the model in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
implemented for networks in the EoN package by Joel C. Miller
https://epidemicsonnetworks.readthedocs.io/en/latest/

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	initial_recovereds (list or numpy array, default: None) – An iterable of initially recovered node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: float('Inf')) – Time at which the simulation should be terminated if it hasn’t already.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	t, S, I, R – time (t), number of susceptible (S), infected (I), and recovered (R) at each time.

	Return type:

	numpy arrays

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> t, S, I, R = contagion.Gillespie_SIR(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax)

	
algorithms.Gillespie_SIS(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, rho=None, tmin=0, tmax=inf, return_full_data=False, sim_kwargs=None, **args)

	A continuous-time SIS model for hypergraphs similar to the model in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
implemented for networks in the EoN package by Joel C. Miller
https://epidemicsonnetworks.readthedocs.io/en/latest/

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: 100) – Time at which the simulation should be terminated if it hasn’t already.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	t, S, I – time (t), number of susceptible (S), and infected (I) at each time.

	Return type:

	numpy arrays

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> t, S, I = contagion.Gillespie_SIS(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax)

	
algorithms.add_to_column(M, i, j)

	Replaces column i (of M) with logical xor between column i and j

	Parameters:

	
	M (np.array) – matrix

	i (int) – index of column being altered

	j (int) – index of column being added to altered

	Returns:

	N

	Return type:

	np.array

	
algorithms.add_to_row(M, i, j)

	Replaces row i with logical xor between row i and j

	Parameters:

	
	M (np.array) –

	i (int) – index of row being altered

	j (int) – index of row being added to altered

	Returns:

	N

	Return type:

	np.array

	
algorithms.betti(bd, k=None)

	Generate the kth-betti numbers for a chain complex with boundary
matrices given by bd

	Parameters:

	
	bd (dict of k-boundary matrices keyed on dimension of domain) –

	k (int, list or tuple, optional, default=None) – list must be min value and max value of k values inclusive
if None, then all betti numbers for dimensions of existing cells will be
computed.

	Returns:

	betti – Description

	Return type:

	dict

	
algorithms.betti_numbers(h, k=None)

	Return the kth betti numbers for the simplicial homology of the ASC
associated to h

	Parameters:

	
	h (hnx.Hypergraph) – Hypergraph to compute the betti numbers from

	k (int or list, optional, default=None) – list must be min value and max value of k values inclusive
if None, then all betti numbers for dimensions of existing cells will be
computed.

	Returns:

	betti – A dictionary of betti numbers keyed by dimension

	Return type:

	dict

	
algorithms.bkMatrix(km1basis, kbasis)

	Compute the boundary map from C_{k-1}-basis to C_k basis with
respect to Z_2

	Parameters:

	
	km1basis (indexable iterable) – Ordered list of $k-1$ dimensional cell

	kbasis (indexable iterable) – Ordered list of k dimensional cells

	Returns:

	bk – boundary matrix in Z_2 stored as boolean

	Return type:

	np.array

	
algorithms.boundary_group(image_basis)

	Returns a csr_matrix with rows corresponding to the elements of the
group generated by image basis over $mathbb{Z}_2$

	Parameters:

	image_basis (numpy.ndarray or scipy.sparse.csr_matrix) – 2d-array of basis elements

	Return type:

	scipy.sparse.csr_matrix

	
algorithms.chain_complex(h, k=None)

	Compute the k-chains and k-boundary maps required to compute homology
for all values in k

	Parameters:

	
	h (hnx.Hypergraph) –

	k (int or list of length 2, optional, default=None) – k must be an integer greater than 0 or a list of
length 2 indicating min and max dimensions to be
computed. eg. if k = [1,2] then 0,1,2,3-chains
and boundary maps for k=1,2,3 will be returned,
if None than k = [1,max dimension of edge in h]

	Returns:

	C, bd – C is a dictionary of lists
bd is a dictionary of numpy arrays

	Return type:

	dict

	
algorithms.chung_lu_hypergraph(k1, k2)

	A function to generate an extension of Chung-Lu hypergraph as implemented by Mirah Shi and described for
bipartite networks by Aksoy et al. in https://doi.org/10.1093/comnet/cnx001

	Parameters:

	
	k1 (dictionary) – This a dictionary where the keys are node ids and the values are node degrees.

	k2 (dictionary) – This a dictionary where the keys are edge ids and the values are edge degrees also known as edge sizes.

	Return type:

	HyperNetX Hypergraph object

Notes

The sums of k1 and k2 should be roughly the same. If they are not the same, this function returns a warning but still runs.
The output currently is a static Hypergraph object. Dynamic hypergraphs are not currently supported.

Example:

>>> import hypernetx.algorithms.generative_models as gm
>>> import random
>>> n = 100
>>> k1 = {i : random.randint(1, 100) for i in range(n)}
>>> k2 = {i : sorted(k1.values())[i] for i in range(n)}
>>> H = gm.chung_lu_hypergraph(k1, k2)

	
algorithms.collective_contagion(node, status, edge)

	The collective contagion mechanism described in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034

	Parameters:

	
	node (hashable) – the node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False)

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> collective_contagion(0, status, (0, 1, 2))
 True
>>> collective_contagion(1, status, (0, 1, 2))
 False
>>> collective_contagion(3, status, (0, 1, 2))
 False

	
algorithms.contagion_animation(fig, H, transition_events, node_state_color_dict, edge_state_color_dict, node_radius=1, fps=1)

	A function to animate discrete-time contagion models for hypergraphs. Currently only supports a circular layout.

	Parameters:

	
	fig (matplotlib Figure object) –

	H (HyperNetX Hypergraph object) –

	transition_events (dictionary) – The dictionary that is output from the discrete_SIS and discrete_SIR functions with return_full_data=True

	node_state_color_dict (dictionary) – Dictionary which specifies the colors of each node state. All node states must be specified.

	edge_state_color_dict (dictionary) – Dictionary with keys that are edge states and values which specify the colors of each edge state
(can specify an alpha parameter). All edge-dependent transition states must be specified
(most common is “I”) and there must be a a default “OFF” setting.

	node_radius (float, default: 1) – The radius of the nodes to draw

	fps (int > 0, default: 1) – Frames per second of the animation

	Return type:

	matplotlib Animation object

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> import matplotlib.pyplot as plt
>>> from IPython.display import HTML
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> dt = 0.1
>>> transition_events = contagion.discrete_SIS(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax, dt=dt, return_full_data=True)
>>> node_state_color_dict = {"S":"green", "I":"red", "R":"blue"}
>>> edge_state_color_dict = {"S":(0, 1, 0, 0.3), "I":(1, 0, 0, 0.3), "R":(0, 0, 1, 0.3), "OFF": (1, 1, 1, 0)}
>>> fps = 1
>>> fig = plt.figure()
>>> animation = contagion.contagion_animation(fig, H, transition_events, node_state_color_dict, edge_state_color_dict, node_radius=1, fps=fps)
>>> HTML(animation.to_jshtml())

	
algorithms.dcsbm_hypergraph(k1, k2, g1, g2, omega)

	A function to generate an extension of DCSBM hypergraph as implemented by Mirah Shi and described for
bipartite networks by Larremore et al. in https://doi.org/10.1103/PhysRevE.90.012805

	Parameters:

	
	k1 (dictionary) – This a dictionary where the keys are node ids and the values are node degrees.

	k2 (dictionary) – This a dictionary where the keys are edge ids and the values are edge degrees also known as edge sizes.

	g1 (dictionary) – This a dictionary where the keys are node ids and the values are the group ids to which the node belongs.
The keys must match the keys of k1.

	g2 (dictionary) – This a dictionary where the keys are edge ids and the values are the group ids to which the edge belongs.
The keys must match the keys of k2.

	omega (2D numpy array) – This is a matrix with entries which specify the number of edges between a given node community and edge community.
The number of rows must match the number of node communities and the number of columns
must match the number of edge communities.

	Return type:

	HyperNetX Hypergraph object

Notes

The sums of k1 and k2 should be the same. If they are not the same, this function returns a warning but still runs.
The sum of k1 (and k2) and omega should be the same. If they are not the same, this function returns a warning
but still runs and the number of entries in the incidence matrix is determined by the omega matrix.

The output currently is a static Hypergraph object. Dynamic hypergraphs are not currently supported.

Example:

>>> n = 100
>>> k1 = {i : random.randint(1, 100) for i in range(n)}
>>> k2 = {i : sorted(k1.values())[i] for i in range(n)}
>>> g1 = {i : random.choice([0, 1]) for i in range(n)}
>>> g2 = {i : random.choice([0, 1]) for i in range(n)}
>>> omega = np.array([[100, 10], [10, 100]])
>>> H = gm.dcsbm_hypergraph(k1, k2, g1, g2, omega)

	
algorithms.dict2part(D)

	Given a dictionary mapping the part for each vertex, return a partition as a list of sets; inverse function to part2dict

	Parameters:

	D (dict) – Dictionary keyed by vertices with values equal to integer
index of the partition the vertex belongs to

	Returns:

	List of sets; one set for each part in the partition

	Return type:

	list

	
algorithms.discrete_SIR(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, initial_recovereds=None, rho=None, tmin=0, tmax=inf, dt=1.0, return_full_data=False, **args)

	A discrete-time SIR model for hypergraphs similar to the construction described in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
“Simplicial models of social contagion” by Iacopini et al.
https://doi.org/10.1038/s41467-019-10431-6

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	initial_recovereds (list or numpy array, default: None) – An iterable of initially recovered node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: float('Inf')) – Time at which the simulation should be terminated if it hasn’t already.

	dt (float > 0, default: 1.0) – Step forward in time that the simulation takes at each step.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	
	if return_full_data –

	dictionary
	Time as the keys and events that happen as the values.

	else –

	t, S, I, Rnumpy arrays
	time (t), number of susceptible (S), infected (I), and recovered (R) at each time.

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> dt = 0.1
>>> t, S, I, R = contagion.discrete_SIR(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax, dt=dt)

	
algorithms.discrete_SIS(H, tau, gamma, transmission_function=<function threshold>, initial_infecteds=None, rho=None, tmin=0, tmax=100, dt=1.0, return_full_data=False, **args)

	A discrete-time SIS model for hypergraphs as implemented in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034 and
“Simplicial models of social contagion” by Iacopini et al.
https://doi.org/10.1038/s41467-019-10431-6

	Parameters:

	
	H (HyperNetX Hypergraph object) –

	tau (dictionary) – Edge sizes as keys (must account for all edge sizes present) and rates of infection for each size (float)

	gamma (float) – The healing rate

	transmission_function (lambda function, default: threshold) – A lambda function that has required arguments (node, status, edge) and optional arguments

	initial_infecteds (list or numpy array, default: None) – Iterable of initially infected node uids

	rho (float from 0 to 1, default: None) – The fraction of initially infected individuals. Both rho and initially infected cannot be specified.

	tmin (float, default: 0) – Time at the start of the simulation

	tmax (float, default: 100) – Time at which the simulation should be terminated if it hasn’t already.

	dt (float > 0, default: 1.0) – Step forward in time that the simulation takes at each step.

	return_full_data (bool, default: False) – This returns all the infection and recovery events at each time if True.

	**args (Optional arguments to transmission function) – This allows user-defined transmission functions with extra parameters.

	Returns:

	
	if return_full_data –

	dictionary
	Time as the keys and events that happen as the values.

	else –

	t, S, Inumpy arrays
	time (t), number of susceptible (S), and infected (I) at each time.

Notes

Example:

>>> import hypernetx.algorithms.contagion as contagion
>>> import random
>>> import hypernetx as hnx
>>> n = 1000
>>> m = 10000
>>> hyperedgeList = [random.sample(range(n), k=random.choice([2,3])) for i in range(m)]
>>> H = hnx.Hypergraph(hyperedgeList)
>>> tau = {2:0.1, 3:0.1}
>>> gamma = 0.1
>>> tmax = 100
>>> dt = 0.1
>>> t, S, I = contagion.discrete_SIS(H, tau, gamma, rho=0.1, tmin=0, tmax=tmax, dt=dt)

	
algorithms.erdos_renyi_hypergraph(n, m, p, node_labels=None, edge_labels=None)

	A function to generate an Erdos-Renyi hypergraph as implemented by Mirah Shi and described for
bipartite networks by Aksoy et al. in https://doi.org/10.1093/comnet/cnx001

	Parameters:

	
	n (int) – Number of nodes

	m (int) – Number of edges

	p (float) – The probability that a bipartite edge is created

	node_labels (list, default=None) – Vertex labels

	edge_labels (list, default=None) – Hyperedge labels

	Return type:

	HyperNetX Hypergraph object

Example:

>>> import hypernetx.algorithms.generative_models as gm
>>> n = 1000
>>> m = n
>>> p = 0.01
>>> H = gm.erdos_renyi_hypergraph(n, m, p)

	
algorithms.get_pi(P)

	Returns the eigenvector corresponding to the largest eigenvalue (in magnitude),
normalized so its entries sum to 1. Intended for the probability transition matrix
of a random walk on a (connected) hypergraph, in which case the output can
be interpreted as the stationary distribution.

	Parameters:

	P (csr matrix) – Probability transition matrix

	Returns:

	pi – Stationary distribution of random walk defined by P

	Return type:

	numpy.ndarray

	
algorithms.homology_basis(bd, k=None, boundary=False, **kwargs)

	Compute a basis for the kth-simplicial homology group, H_k, defined by a
chain complex C with boundary maps given by bd $= {k:partial_k }$

	Parameters:

	
	bd (dict) – dict of boundary matrices on k-chains to k-1 chains keyed on k
if krange is a tuple then all boundary matrices k in [krange[0],..,krange[1]]
inclusive must be in the dictionary

	k (int or list of ints, optional, default=None) – k must be a positive integer or a list of
2 integers indicating min and max dimensions to be
computed, if none given all homology groups will be computed from
available boundary matrices in bd

	boundary (bool) – option to return a basis for the boundary group from each dimension.
Needed to compute the shortest generators in the homology group.

	Returns:

	
	basis (dict) – dict of generators as 0-1 tuples keyed by dim
basis for dimension k will be returned only if bd[k] and bd[k+1] have
been provided.

	im (dict) – dict of boundary group generators keyed by dim

	
algorithms.hypergraph_homology_basis(h, k=None, shortest=False, interpreted=True)

	Computes the kth-homology groups mod 2 for the ASC
associated with the hypergraph h for k in krange inclusive

	Parameters:

	
	h (hnx.Hypergraph) –

	k (int or list of length 2, optional, default = None) – k must be an integer greater than 0 or a list of
length 2 indicating min and max dimensions to be
computed

	shortest (bool, optional, default=False) – option to look for shortest representative for each coset in the
homology group, only good for relatively small examples

	interpreted (bool, optional, default = True) – if True will return an explicit basis in terms of the k-chains

	Returns:

	
	basis (list) – list of generators as k-chains as boolean vectors

	interpreted_basis – lists of kchains in basis

	
algorithms.individual_contagion(node, status, edge)

	The individual contagion mechanism described in
“The effect of heterogeneity on hypergraph contagion models” by Landry and Restrepo
https://doi.org/10.1063/5.0020034

	Parameters:

	
	node (hashable) – The node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False)

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> individual_contagion(0, status, (0, 1, 3))
 True
>>> individual_contagion(1, status, (0, 1, 2))
 False
>>> collective_contagion(3, status, (0, 3, 4))
 False

	
algorithms.interpret(Ck, arr, labels=None)

	Returns the data as represented in Ck associated with the arr

	Parameters:

	
	Ck (list) – a list of k-cells being referenced by arr

	arr (np.array) – array of 0-1 vectors

	labels (dict, optional) – dictionary of labels to associate to the nodes in the cells

	Returns:

	list of k-cells referenced by data in Ck

	Return type:

	list

	
algorithms.kchainbasis(h, k)

	Compute the set of k dimensional cells in the abstract simplicial
complex associated with the hypergraph.

	Parameters:

	
	h (hnx.Hypergraph) –

	k (int) – dimension of cell

	Returns:

	an ordered list of kchains represented as tuples of length k+1

	Return type:

	list

See also

hnx.hypergraph.toplexes

Notes

	Method works best if h is simple [Berge], i.e. no edge contains another and there are no duplicate edges (toplexes).

	Hypergraph node uids must be sortable.

	
algorithms.kumar(HG, delta=0.01, verbose=False)

	Compute a partition of the vertices in hypergraph HG as per Kumar’s algorithm [1]

	Parameters:

	
	HG (Hypergraph) –

	delta (float, optional) – convergence stopping criterion

	Returns:

	A partition of the vertices in HG

	Return type:

	list of sets

	
algorithms.last_step(HG, A, wdc=<function linear>, delta=0.01, verbose=False)

	Given some initial partition L, compute a new partition of the vertices in HG as per Last-Step algorithm [2]

Note

This is a very simple algorithm that tries moving nodes between communities to improve hypergraph modularity.
It requires an initial non-trivial partition which can be obtained for example via graph clustering on the 2-section of HG,
or via Kumar’s algorithm.

	Parameters:

	
	HG (Hypergraph) –

	L (list of sets) – some initial partition of the vertices in HG

	wdc (func, optional) – Hyperparameter for hypergraph modularity [2]

	delta (float, optional) – convergence stopping criterion

	verbose (boolean, optional) – If set, also returns progress after each pass through the vertices

	Returns:

	A new partition for the vertices in HG

	Return type:

	list of sets

	
algorithms.linear(d, c)

	Hyperparameter for hypergraph modularity [2] for d-edge with c vertices in the majority class.
This is the default choice for modularity() and last_step() functions.

	Parameters:

	
	d (int) – Number of vertices in an edge

	c (int) – Number of vertices in the majority class

	Returns:

	c/d if c>d/2 else 0

	Return type:

	float

	
algorithms.logical_dot(ar1, ar2)

	Returns the boolean equivalent of the dot product mod 2 on two 1-d arrays of
the same length.

	Parameters:

	
	ar1 (numpy.ndarray) – 1-d array

	ar2 (numpy.ndarray) – 1-d array

	Returns:

	boolean value associated with dot product mod 2

	Return type:

	bool

	Raises:

	HyperNetXError – If arrays are not of the same length an error will be raised.

	
algorithms.logical_matadd(mat1, mat2)

	Returns the boolean equivalent of matrix addition mod 2 on two
binary arrays stored as type boolean

	Parameters:

	
	mat1 (np.ndarray) – 2-d array of boolean values

	mat2 (np.ndarray) – 2-d array of boolean values

	Returns:

	mat – boolean matrix equivalent to the mod 2 matrix addition of the
matrices as matrices over Z/2Z

	Return type:

	np.ndarray

	Raises:

	HyperNetXError – If dimensions are not equal an error will be raised.

	
algorithms.logical_matmul(mat1, mat2)

	Returns the boolean equivalent of matrix multiplication mod 2 on two
binary arrays stored as type boolean

	Parameters:

	
	mat1 (np.ndarray) – 2-d array of boolean values

	mat2 (np.ndarray) – 2-d array of boolean values

	Returns:

	mat – boolean matrix equivalent to the mod 2 matrix multiplication of the
matrices as matrices over Z/2Z

	Return type:

	np.ndarray

	Raises:

	HyperNetXError – If inner dimensions are not equal an error will be raised.

	
algorithms.majority(d, c)

	Hyperparameter for hypergraph modularity [2] for d-edge with c vertices in the majority class.
This corresponds to the majority rule [3]

	Parameters:

	
	d (int) – Number of vertices in an edge

	c (int) – Number of vertices in the majority class

	Returns:

	1 if c>d/2 else 0

	Return type:

	bool

	
algorithms.majority_vote(node, status, edge)

	The majority vote contagion mechanism. If a majority of neighbors are contagious,
it is possible for an individual to change their opinion. If opinions are divided equally,
choose randomly.

	Parameters:

	
	node (hashable) – The node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> majority_vote(0, status, (0, 1, 2))
 True
>>> majority_vote(0, status, (0, 1, 2, 3))
 True
>>> majority_vote(1, status, (0, 1, 2))
 False
>>> majority_vote(3, status, (0, 1, 2))
 False

	
algorithms.matmulreduce(arr, reverse=False)

	Recursively applies a ‘logical multiplication’ to a list of boolean arrays.

For arr = [arr[0],arr[1],arr[2]…arr[n]] returns product arr[0]arr[1]…arr[n]
If reverse = True, returns product arr[n]arr[n-1]…arr[0]

	Parameters:

	
	arr (list of np.array) – list of nxm matrices represented as np.array

	reverse (bool, optional) – order to multiply the matrices

	Returns:

	P – Product of matrices in the list

	Return type:

	np.array

	
algorithms.modularity(HG, A, wdc=<function linear>)

	Computes modularity of hypergraph HG with respect to partition A.

	Parameters:

	
	HG (Hypergraph) – The hypergraph with some precomputed attributes via: precompute_attributes(HG)

	A (list of sets) – Partition of the vertices in HG

	wdc (func, optional) – Hyperparameter for hypergraph modularity [2]

Note

For ‘wdc’, any function of the format w(d,c) that returns 0 when c <= d/2 and value in [0,1] otherwise can be used.
Default is ‘linear’; other supplied choices are ‘majority’ and ‘strict’.

	Returns:

	The modularity function for partition A on HG

	Return type:

	float

	
algorithms.norm_lap(H, weights=False, index=True)

	Normalized Laplacian matrix of the hypergraph. Symmetrizes the probability transition
matrix of a hypergraph random walk using the stationary distribution, using the digraph
Laplacian defined in:

Chung, Fan. “Laplacians and the Cheeger inequality for directed graphs.”
Annals of Combinatorics 9.1 (2005): 1-19.

and studied in the context of hypergraphs in:

Hayashi, K., Aksoy, S. G., Park, C. H., & Park, H.
Hypergraph random walks, laplacians, and clustering.
In Proceedings of CIKM 2020, (2020): 495-504.

	Parameters:

	
	H (hnx.Hypergraph) – The hypergraph must be connected, meaning there is a path linking any two
vertices

	weight (bool, optional, default : False) – Uses cell_weights, if False, uniform weights are utilized.

	index (bool, optional) – Whether to return matrix-index to vertex-label mapping

	Returns:

	
	P (scipy.sparse.csr.csr_matrix) – Probability transition matrix of the random walk on the hypergraph

	id (list) – contains list of index of node ids for rows

	
algorithms.part2dict(A)

	Given a partition (list of sets), returns a dictionary mapping the part for each vertex; inverse function
to dict2part

	Parameters:

	A (list of sets) – a partition of the vertices

	Returns:

	a dictionary with {vertex: partition index}

	Return type:

	dict

	
algorithms.prob_trans(H, weights=False, index=True, check_connected=True)

	The probability transition matrix of a random walk on the vertices of a hypergraph.
At each step in the walk, the next vertex is chosen by:

	Selecting a hyperedge e containing the vertex with probability proportional to w(e)

	Selecting a vertex v within e with probability proportional to a gamma(v,e)

If weights are not specified, then all weights are uniform and the walk is equivalent
to a simple random walk.
If weights are specified, the hyperedge weights w(e) are determined from the weights
gamma(v,e).

	Parameters:

	
	H (hnx.Hypergraph) – The hypergraph must be connected, meaning there is a path linking any two
vertices

	weights (bool, optional, default : False) – Use the cell_weights associated with the hypergraph
If False, uniform weights are utilized.

	index (bool, optional) – Whether to return matrix index to vertex label mapping

	Returns:

	
	P (scipy.sparse.csr.csr_matrix) – Probability transition matrix of the random walk on the hypergraph

	index (list) – contains list of index of node ids for rows

	
algorithms.reduced_row_echelon_form_mod2(M)

	Computes the invertible transformation matrices needed to compute
the reduced row echelon form of M modulo 2

	Parameters:

	M (np.array) – a rectangular matrix with elements in Z_2

	Returns:

	L, S, Linv – LM = S where S is the reduced echelon form of M
and M = LinvS

	Return type:

	np.arrays

	
algorithms.s_betweenness_centrality(H, s=1, edges=True, normalized=True, return_singletons=True)

	A centrality measure for an s-edge(node) subgraph of H based on shortest paths.
Equals the betweenness centrality of vertices in the edge(node) s-linegraph.

In a graph (2-uniform hypergraph) the betweenness centrality of a vertex v
is the ratio of the number of non-trivial shortest paths between any pair of
vertices in the graph that pass through v divided by the total number of
non-trivial shortest paths in the graph.

The centrality of edge to all shortest s-edge paths
V = the set of vertices in the linegraph.
$sigma(s,t)$ = the number of shortest paths between vertices s and t.
$sigma(s,t|v)$ = the number of those paths that pass through vertex v.

\[c_B(v) = \sum_{s \neq t \in V} \frac{\sigma(s, t|v)}{\sigma(s,t)}\]

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int) – s connectedness requirement

	edges (bool, optional) – determines if edge or node linegraph

	normalized – bool, default=False,
If true the betweenness values are normalized by 2/((n-1)(n-2)),
where n is the number of edges in H

	return_singletons (bool, optional) – if False will ignore singleton components of linegraph

	Returns:

	A dictionary of s-betweenness centrality value of the edges.

	Return type:

	dict

	
algorithms.s_closeness_centrality(H, s=1, edges=True, return_singletons=True, source=None)

	In a connected component the reciprocal of the sum of the distance between an
edge(node) and all other edges(nodes) in the component times the number of edges(nodes)
in the component minus 1.

V = the set of vertices in the linegraph.
$n = |V|$
d = shortest path distance

\[C(u) = \frac{n - 1}{\sum_{v \neq u \in V} d(v, u)}\]

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int, optional) –

	edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

	return_singletons (bool, optional) – Indicates if method should return values for singleton components.

	source (str, optional) – Identifier of node or edge of interest for computing centrality

	Returns:

	returns the s-closeness centrality value of the edges(nodes).
If source=None a dictionary of values for each s-edge in H is returned.
If source then a single value is returned.

	Return type:

	dict or float

	
algorithms.s_eccentricity(H, s=1, edges=True, source=None, return_singletons=True)

	The length of the longest shortest path from a vertex u to every other vertex in
the s-linegraph.
V = set of vertices in the s-linegraph
d = shortest path distance

\[\text{s-ecc}(u) = \text{max}\{d(u,v): v \in V\}\]

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int, optional) –

	edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

	return_singletons (bool, optional) – Indicates if method should return values for singleton components.

	source (str, optional) – Identifier of node or edge of interest for computing centrality

	Returns:

	returns the s-eccentricity value of the edges(nodes).
If source=None a dictionary of values for each s-edge in H is returned.
If source then a single value is returned.
If the s-linegraph is disconnected, np.inf is returned.

	Return type:

	dict or float

	
algorithms.s_harmonic_centrality(H, s=1, edges=True, source=None, normalized=False, return_singletons=True)

	A centrality measure for an s-edge subgraph of H. A value equal to 1 means the s-edge
intersects every other s-edge in H. All values range between 0 and 1.
Edges of size less than s return 0. If H contains only one s-edge a 0 is returned.

The denormalized reciprocal of the harmonic mean of all distances from u to all other vertices.
V = the set of vertices in the linegraph.
d = shortest path distance

\[C(u) = \sum_{v \neq u \in V} \frac{1}{d(v, u)}\]

Normalized this becomes:
$$C(u) = sum_{v neq u in V} frac{1}{d(v, u)}cdotfrac{2}{(n-1)(n-2)}$$
where n is the number vertices.

	Parameters:

	
	H (hnx.Hypergraph) –

	s (int, optional) –

	edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

	return_singletons (bool, optional) – Indicates if method should return values for singleton components.

	source (str, optional) – Identifier of node or edge of interest for computing centrality

	Returns:

	returns the s-harmonic closeness centrality value of the edges, a number between 0 and 1 inclusive.
If source=None a dictionary of values for each s-edge in H is returned.
If source then a single value is returned.

	Return type:

	dict or float

	
algorithms.s_harmonic_closeness_centrality(H, s=1, edge=None)

	

	
algorithms.smith_normal_form_mod2(M)

	Computes the invertible transformation matrices needed to compute the
Smith Normal Form of M modulo 2

	Parameters:

	
	M (np.array) – a rectangular matrix with data type bool

	track (bool) – if track=True will print out the transformation as Z/2Z matrix as it
discovers L[i] and R[j]

	Returns:

	L, R, S, Linv – LMR = S is the Smith Normal Form of the matrix M.

	Return type:

	np.arrays

Note

Given a mxn matrix M with
entries in Z_2 we start with the equation: $L M R = S$, where
$L = I_m$, and $R=I_n$ are identity matrices and $S = M$. We
repeatedly apply actions to the left and right side of the equation
to transform S into a diagonal matrix.
For each action applied to the left side we apply its inverse
action to the right side of I_m to generate L^{-1}.
Finally we verify:
$L M R = S$ and $LLinv = I_m$.

	
algorithms.spec_clus(H, k, existing_lap=None, weights=False)

	Hypergraph spectral clustering of the vertex set into k disjoint clusters
using the normalized hypergraph Laplacian. Equivalent to the “RDC-Spec”
Algorithm 1 in:

Hayashi, K., Aksoy, S. G., Park, C. H., & Park, H.
Hypergraph random walks, laplacians, and clustering.
In Proceedings of CIKM 2020, (2020): 495-504.

	Parameters:

	
	H (hnx.Hypergraph) – The hypergraph must be connected, meaning there is a path linking any two
vertices

	k (int) – Number of clusters

	existing_lap (csr matrix, optional) – Whether to use an existing Laplacian; otherwise, normalized hypergraph Laplacian
will be utilized

	weights (bool, optional) – Use the cell_weights of the hypergraph. If False uniform weights are used.

	Returns:

	clusters – Vertex cluster dictionary, keyed by integers 0,…,k-1, with lists of
vertices as values.

	Return type:

	dict

	
algorithms.strict(d, c)

	Hyperparameter for hypergraph modularity [2] for d-edge with c vertices in the majority class.
This corresponds to the strict rule [3]

	Parameters:

	
	d (int) – Number of vertices in an edge

	c (int) – Number of vertices in the majority class

	Returns:

	1 if c==d else 0

	Return type:

	bool

	
algorithms.swap_columns(i, j, *args)

	Swaps ith and jth column of each matrix in args
Returns a list of new matrices

	Parameters:

	
	i (int) –

	j (int) –

	args (np.arrays) –

	Returns:

	list of copies of args with ith and jth row swapped

	Return type:

	list

	
algorithms.swap_rows(i, j, *args)

	Swaps ith and jth row of each matrix in args
Returns a list of new matrices

	Parameters:

	
	i (int) –

	j (int) –

	args (np.arrays) –

	Returns:

	list of copies of args with ith and jth row swapped

	Return type:

	list

	
algorithms.threshold(node, status, edge, tau=0.1)

	The threshold contagion mechanism

	Parameters:

	
	node (hashable) – The node uid to infect (If it doesn’t have status “S”, it will automatically return False)

	status (dictionary) – The nodes are keys and the values are statuses (The infected state denoted with “I”)

	edge (iterable) – Iterable of node ids (node must be in the edge or it will automatically return False)

	tau (float between 0 and 1, default: 0.1) – The fraction of nodes in an edge that must be infected for the edge to be able to transmit to the node

	Returns:

	False if there is no potential to infect and True if there is.

	Return type:

	bool

Notes

Example:

>>> status = {0:"S", 1:"I", 2:"I", 3:"S", 4:"R"}
>>> threshold(0, status, (0, 2, 3, 4), tau=0.2)
 True
>>> threshold(0, status, (0, 2, 3, 4), tau=0.5)
 False
>>> threshold(3, status, (1, 2, 3), tau=1)
 False

	
algorithms.two_section(HG)

	Creates a random walk based [1] 2-section igraph Graph with transition weights defined by the
weights of the hyperedges.

	Parameters:

	HG (Hypergraph) –

	Returns:

	The 2-section graph built from HG

	Return type:

	igraph.Graph

 drawing

drawing

	drawing package
	Submodules

	drawing.rubber_band module
	draw()

	draw_hyper_edge_labels()

	draw_hyper_edges()

	draw_hyper_labels()

	draw_hyper_nodes()

	get_default_radius()

	layout_hyper_edges()

	layout_node_link()

	drawing.two_column module
	draw()

	draw_hyper_edges()

	draw_hyper_labels()

	layout_two_column()

	drawing.util module
	get_collapsed_size()

	get_frozenset_label()

	get_line_graph()

	get_set_layering()

	inflate()

	inflate_kwargs()

	transpose_inflated_kwargs()

	Module contents
	draw()

	draw_two_column()

 drawing package

drawing package

Submodules

drawing.rubber_band module

	
drawing.rubber_band.draw(H, pos=None, with_color=True, with_node_counts=False, with_edge_counts=False, layout=<function spring_layout>, layout_kwargs={}, ax=None, node_radius=None, edges_kwargs={}, nodes_kwargs={}, edge_labels_on_edge=True, edge_labels={}, edge_labels_kwargs={}, node_labels={}, node_labels_kwargs={}, with_edge_labels=True, with_node_labels=True, node_label_alpha=0.35, edge_label_alpha=0.35, with_additional_edges=None, additional_edges_kwargs={}, return_pos=False)

	Draw a hypergraph as a Matplotlib figure

By default this will draw a colorful “rubber band” like hypergraph, where
convex hulls represent edges and are drawn around the nodes they contain.

This is a convenience function that wraps calls with sensible parameters to
the following lower-level drawing functions:

	draw_hyper_edges,

	draw_hyper_edge_labels,

	draw_hyper_labels, and

	draw_hyper_nodes

The default layout algorithm is nx.spring_layout, but other layouts can be
passed in. The Hypergraph is converted to a bipartite graph, and the layout
algorithm is passed the bipartite graph.

If you have a pre-determined layout, you can pass in a “pos” dictionary.
This is a dictionary mapping from node id’s to x-y coordinates. For example:

>>> pos = {
>>> 'A': (0, 0),
>>> 'B': (1, 2),
>>> 'C': (5, -3)
>>> }

will position the nodes {A, B, C} manually at the locations specified. The
coordinate system is in Matplotlib “data coordinates”, and the figure will
be centered within the figure.

By default, this will draw in a new figure, but the axis to render in can be
specified using ax.

This approach works well for small hypergraphs, and does not guarantee
a rigorously “correct” drawing. Overlapping of sets in the drawing generally
implies that the sets intersect, but sometimes sets overlap if there is no
intersection. It is not possible, in general, to draw a “correct” hypergraph
this way for an arbitrary hypergraph, in the same way that not all graphs
have planar drawings.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	with_color (bool) – set to False to disable color cycling of edges

	with_node_counts (bool) – set to True to replace the label for collapsed nodes with the number of elements

	with_edge_counts (bool) – set to True to label collapsed edges with number of elements

	layout (function) – layout algorithm to compute

	layout_kwargs (dict) – keyword arguments passed to layout function

	ax (Axis) – matplotlib axis on which the plot is rendered

	edges_kwargs (dict) – keyword arguments passed to matplotlib.collections.PolyCollection for edges

	node_radius (None, int, float, or dict) – radius of all nodes, or dictionary of node:value; the default (None) calculates radius based on number of collapsed nodes; reasonable values range between 1 and 3

	nodes_kwargs (dict) – keyword arguments passed to matplotlib.collections.PolyCollection for nodes

	edge_labels_on_edge (bool) – whether to draw edge labels on the edge (rubber band) or inside

	edge_labels_kwargs (dict) – keyword arguments passed to matplotlib.annotate for edge labels

	node_labels_kwargs (dict) – keyword argumetns passed to matplotlib.annotate for node labels

	with_edge_labels (bool) – set to False to make edge labels invisible

	with_node_labels (bool) – set to False to make node labels invisible

	node_label_alpha (float) – the transparency (alpha) of the box behind text drawn in the figure for node labels

	edge_label_alpha (float) – the transparency (alpha) of the box behind text drawn in the figure for edge labels

	
drawing.rubber_band.draw_hyper_edge_labels(H, pos, polys, labels={}, edge_labels_on_edge=True, ax=None, **kwargs)

	Draws a label on the hyper edge boundary.

Should be passed Matplotlib PolyCollection representing the hyper-edges, see
the return value of draw_hyper_edges.

The label will be draw on the least curvy part of the polygon, and will be
aligned parallel to the orientation of the polygon where it is drawn.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	polys (PolyCollection) – collection of polygons returned by draw_hyper_edges

	labels (dict) – mapping of node id to string label

	ax (Axis) – matplotlib axis on which the plot is rendered

	kwargs (dict) – Keyword arguments are passed through to Matplotlib’s annotate function.

	
drawing.rubber_band.draw_hyper_edges(H, pos, ax=None, node_radius={}, dr=None, **kwargs)

	Draws a convex hull around the nodes contained within each edge in H

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	node_radius (dict) – mapping of node to R^1 (radius of each node)

	dr (float) – the spacing between concentric rings

	ax (Axis) – matplotlib axis on which the plot is rendered

	kwargs (dict) – keyword arguments, e.g., linewidth, facecolors, are passed through to the PolyCollection constructor

	Returns:

	a Matplotlib PolyCollection that can be further styled

	Return type:

	PolyCollection

	
drawing.rubber_band.draw_hyper_labels(H, pos, node_radius={}, ax=None, labels={}, **kwargs)

	Draws text labels for the hypergraph nodes.

The label is drawn to the right of the node. The node radius is needed (see
draw_hyper_nodes) so the text can be offset appropriately as the node size
changes.

The text label can be customized by passing in a dictionary, labels, mapping
a node to its custom label. By default, the label is the string
representation of the node.

Keyword arguments are passed through to Matplotlib’s annotate function.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	node_radius (dict) – mapping of node to R^1 (radius of each node)

	ax (Axis) – matplotlib axis on which the plot is rendered

	labels (dict) – mapping of node to text label

	kwargs (dict) – keyword arguments passed to matplotlib.annotate

	
drawing.rubber_band.draw_hyper_nodes(H, pos, node_radius={}, r0=None, ax=None, **kwargs)

	Draws a circle for each node in H.

The position of each node is specified by the a dictionary/list-like, pos,
where pos[v] is the xy-coordinate for the vertex. The radius of each node
can be specified as a dictionary where node_radius[v] is the radius. If a
node is missing from this dictionary, or the node_radius is not specified at
all, a sensible default radius is chosen based on distances between nodes
given by pos.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	node_radius (dict) – mapping of node to R^1 (radius of each node)

	r0 (float) – minimum distance that concentric rings start from the node position

	ax (Axis) – matplotlib axis on which the plot is rendered

	kwargs (dict) – keyword arguments, e.g., linewidth, facecolors, are passed through to the PolyCollection constructor

	Returns:

	a Matplotlib PolyCollection that can be further styled

	Return type:

	PolyCollection

	
drawing.rubber_band.get_default_radius(H, pos)

	Calculate a reasonable default node radius

This function iterates over the hyper edges and finds the most distant
pair of points given the positions provided. Then, the node radius is a fraction
of the median of this distance take across all hyper-edges.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	Returns:

	the recommended radius

	Return type:

	float

	
drawing.rubber_band.layout_hyper_edges(H, pos, node_radius={}, dr=None)

	Draws a convex hull for each edge in H.

Position of the nodes in the graph is specified by the position dictionary,
pos. Convex hulls are spaced out such that if one set contains another, the
convex hull will surround the contained set. The amount of spacing added
between hulls is specified by the parameter, dr.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	node_radius (dict) – mapping of node to R^1 (radius of each node)

	dr (float) – the spacing between concentric rings

	ax (Axis) – matplotlib axis on which the plot is rendered

	Returns:

	A mapping from hyper edge ids to paths (Nx2 numpy matrices)

	Return type:

	dict

	
drawing.rubber_band.layout_node_link(H, G=None, layout=<function spring_layout>, **kwargs)

	Helper function to use a NetwrokX-like graph layout algorithm on a Hypergraph

The hypergraph is converted to a bipartite graph, allowing the usual graph layout
techniques to be applied.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	G (Graph) – an additional set of links to consider during the layout process

	layout (function) – the layout algorithm which accepts a NetworkX graph and keyword arguments

	kwargs (dict) – Keyword arguments are passed through to the layout algorithm

	Returns:

	mapping of node and edge positions to R^2

	Return type:

	dict

drawing.two_column module

	
drawing.two_column.draw(H, with_node_labels=True, with_edge_labels=True, with_node_counts=False, with_edge_counts=False, with_color=True, edge_kwargs=None, ax=None)

	Draw a hypergraph using a two-collumn layout.

This is intended reproduce an illustrative technique for bipartite graphs
and hypergraphs that is typically used in papers and textbooks.

The left column is reserved for nodes and the right column is reserved for
edges. A line is drawn between a node an an edge

The order of nodes and edges is optimized to reduce line crossings between
the two columns. Spacing between disconnected components is adjusted to make
the diagram easier to read, by reducing the angle of the lines.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	with_node_labels (bool) – False to disable node labels

	with_edge_labels (bool) – False to disable edge labels

	with_node_counts (bool) – set to True to label collapsed nodes with number of elements

	with_edge_counts (bool) – set to True to label collapsed edges with number of elements

	with_color (bool) – set to False to disable color cycling of hyper edges

	edge_kwargs (dict) – keyword arguments to pass to matplotlib.LineCollection

	ax (Axis) – matplotlib axis on which the plot is rendered

	
drawing.two_column.draw_hyper_edges(H, pos, ax=None, **kwargs)

	Renders hyper edges for the two column layout.

Each node-hyper edge membership is rendered as a line connecting the node
in the left column to the edge in the right column.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	ax (Axis) – matplotlib axis on which the plot is rendered

	kwargs (dict) – keyword arguments passed to matplotlib.LineCollection

	Returns:

	the hyper edges

	Return type:

	LineCollection

	
drawing.two_column.draw_hyper_labels(H, pos, labels={}, with_node_labels=True, with_edge_labels=True, ax=None)

	Renders hyper labels (nodes and edges) for the two column layout.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	labels (dict) – custom labels for nodes and edges can be supplied

	with_node_labels (bool) – False to disable node labels

	with_edge_labels (bool) – False to disable edge labels

	ax (Axis) – matplotlib axis on which the plot is rendered

	kwargs (dict) – keyword arguments passed to matplotlib.LineCollection

	
drawing.two_column.layout_two_column(H, spacing=2)

	Two column (bipartite) layout algorithm.

This algorithm first converts the hypergraph into a bipartite graph and
then computes connected components. Disonneccted components are handled
independently and then stacked together.

Within a connected component, the spectral ordering of the bipartite graph
provides a quick and dirty ordering that minimizes edge crossings in the
diagram.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	spacing (float) – amount of whitespace between disconnected components

drawing.util module

	
drawing.util.get_collapsed_size(v)

	

	
drawing.util.get_frozenset_label(S, count=False, override={})

	Helper function for rendering the labels of possibly collapsed nodes and edges

	Parameters:

	
	S (iterable) – list of entities to be labeled

	count (bool) – True if labels should be counts of entities instead of list

	Returns:

	mapping of entity to its string representation

	Return type:

	dict

	
drawing.util.get_line_graph(H, collapse=True)

	Computes the line graph, a directed graph, where a directed edge (u, v)
exists if the edge u is a subset of the edge v in the hypergraph.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	collapse (bool) – True if edges should be added if hyper edges are identical

	Returns:

	A directed graph

	Return type:

	networkx.DiGraph

	
drawing.util.get_set_layering(H, collapse=True)

	Computes a layering of the edges in the hyper graph.

In this layering, each edge is assigned a level. An edge u will be above
(e.g., have a smaller level value) another edge v if v is a subset of u.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	collapse (bool) – True if edges should be added if hyper edges are identical

	Returns:

	a mapping of vertices in H to integer levels

	Return type:

	dict

	
drawing.util.inflate(items, v)

	

	
drawing.util.inflate_kwargs(items, kwargs)

	Helper function to expand keyword arguments.

	Parameters:

	
	n (int) – length of resulting list if argument is expanded

	kwargs (dict) – keyword arguments to be expanded

	Returns:

	dictionary with same keys as kwargs and whose values are lists of length n

	Return type:

	dict

	
drawing.util.transpose_inflated_kwargs(inflated)

	

Module contents

	
drawing.draw(H, pos=None, with_color=True, with_node_counts=False, with_edge_counts=False, layout=<function spring_layout>, layout_kwargs={}, ax=None, node_radius=None, edges_kwargs={}, nodes_kwargs={}, edge_labels_on_edge=True, edge_labels={}, edge_labels_kwargs={}, node_labels={}, node_labels_kwargs={}, with_edge_labels=True, with_node_labels=True, node_label_alpha=0.35, edge_label_alpha=0.35, with_additional_edges=None, additional_edges_kwargs={}, return_pos=False)

	Draw a hypergraph as a Matplotlib figure

By default this will draw a colorful “rubber band” like hypergraph, where
convex hulls represent edges and are drawn around the nodes they contain.

This is a convenience function that wraps calls with sensible parameters to
the following lower-level drawing functions:

	draw_hyper_edges,

	draw_hyper_edge_labels,

	draw_hyper_labels, and

	draw_hyper_nodes

The default layout algorithm is nx.spring_layout, but other layouts can be
passed in. The Hypergraph is converted to a bipartite graph, and the layout
algorithm is passed the bipartite graph.

If you have a pre-determined layout, you can pass in a “pos” dictionary.
This is a dictionary mapping from node id’s to x-y coordinates. For example:

>>> pos = {
>>> 'A': (0, 0),
>>> 'B': (1, 2),
>>> 'C': (5, -3)
>>> }

will position the nodes {A, B, C} manually at the locations specified. The
coordinate system is in Matplotlib “data coordinates”, and the figure will
be centered within the figure.

By default, this will draw in a new figure, but the axis to render in can be
specified using ax.

This approach works well for small hypergraphs, and does not guarantee
a rigorously “correct” drawing. Overlapping of sets in the drawing generally
implies that the sets intersect, but sometimes sets overlap if there is no
intersection. It is not possible, in general, to draw a “correct” hypergraph
this way for an arbitrary hypergraph, in the same way that not all graphs
have planar drawings.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	pos (dict) – mapping of node and edge positions to R^2

	with_color (bool) – set to False to disable color cycling of edges

	with_node_counts (bool) – set to True to replace the label for collapsed nodes with the number of elements

	with_edge_counts (bool) – set to True to label collapsed edges with number of elements

	layout (function) – layout algorithm to compute

	layout_kwargs (dict) – keyword arguments passed to layout function

	ax (Axis) – matplotlib axis on which the plot is rendered

	edges_kwargs (dict) – keyword arguments passed to matplotlib.collections.PolyCollection for edges

	node_radius (None, int, float, or dict) – radius of all nodes, or dictionary of node:value; the default (None) calculates radius based on number of collapsed nodes; reasonable values range between 1 and 3

	nodes_kwargs (dict) – keyword arguments passed to matplotlib.collections.PolyCollection for nodes

	edge_labels_on_edge (bool) – whether to draw edge labels on the edge (rubber band) or inside

	edge_labels_kwargs (dict) – keyword arguments passed to matplotlib.annotate for edge labels

	node_labels_kwargs (dict) – keyword argumetns passed to matplotlib.annotate for node labels

	with_edge_labels (bool) – set to False to make edge labels invisible

	with_node_labels (bool) – set to False to make node labels invisible

	node_label_alpha (float) – the transparency (alpha) of the box behind text drawn in the figure for node labels

	edge_label_alpha (float) – the transparency (alpha) of the box behind text drawn in the figure for edge labels

	
drawing.draw_two_column(H, with_node_labels=True, with_edge_labels=True, with_node_counts=False, with_edge_counts=False, with_color=True, edge_kwargs=None, ax=None)

	Draw a hypergraph using a two-collumn layout.

This is intended reproduce an illustrative technique for bipartite graphs
and hypergraphs that is typically used in papers and textbooks.

The left column is reserved for nodes and the right column is reserved for
edges. A line is drawn between a node an an edge

The order of nodes and edges is optimized to reduce line crossings between
the two columns. Spacing between disconnected components is adjusted to make
the diagram easier to read, by reducing the angle of the lines.

	Parameters:

	
	H (Hypergraph) – the entity to be drawn

	with_node_labels (bool) – False to disable node labels

	with_edge_labels (bool) – False to disable edge labels

	with_node_counts (bool) – set to True to label collapsed nodes with number of elements

	with_edge_counts (bool) – set to True to label collapsed edges with number of elements

	with_color (bool) – set to False to disable color cycling of hyper edges

	edge_kwargs (dict) – keyword arguments to pass to matplotlib.LineCollection

	ax (Axis) – matplotlib axis on which the plot is rendered

 reports

reports

	reports package
	Submodules

	reports.descriptive_stats module
	centrality_stats()

	comp_dist()

	degree_dist()

	dist_stats()

	edge_size_dist()

	info()

	info_dict()

	s_comp_dist()

	s_edge_diameter_dist()

	s_node_diameter_dist()

	toplex_dist()

	Module contents
	centrality_stats()

	comp_dist()

	degree_dist()

	dist_stats()

	edge_size_dist()

	info()

	info_dict()

	s_comp_dist()

	s_edge_diameter_dist()

	s_node_diameter_dist()

	toplex_dist()

 reports package

reports package

Submodules

reports.descriptive_stats module

	This module contains methods which compute various distributions for hypergraphs:
	
	Edge size distribution

	Node degree distribution

	Component size distribution

	Toplex size distribution

	Diameter

Also computes general hypergraph information: number of nodes, edges, cells, aspect ratio, incidence matrix density

	
reports.descriptive_stats.centrality_stats(X)

	Computes basic centrality statistics for X

	Parameters:

	X – an iterable of numbers

	Returns:

	[min, max, mean, median, standard deviation] – List of centrality statistics for X

	Return type:

	list

	
reports.descriptive_stats.comp_dist(H, aggregated=False)

	Computes component sizes, number of nodes.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
component sizes (number of nodes) and counts. If aggregated
is False, returns a list of components sizes in H.

	Returns:

	comp_dist – List of component sizes or dictionary of component size distribution

	Return type:

	list or dictionary

See also

s_comp_dist

	
reports.descriptive_stats.degree_dist(H, aggregated=False)

	Computes degrees of nodes of a hypergraph.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
degrees and counts. If aggregated is False, returns a
list of degrees in H.

	Returns:

	degree_dist – List of degrees or dictionary of degree distribution

	Return type:

	list or dict

	
reports.descriptive_stats.dist_stats(H)

	Computes many basic hypergraph stats and puts them all into a single dictionary object

	nrows = number of nodes (rows in the incidence matrix)

	ncols = number of edges (columns in the incidence matrix)

	aspect ratio = nrows/ncols

	ncells = number of filled cells in incidence matrix

	density = ncells/(nrows*ncols)

	node degree list = degree_dist(H)

	node degree dist = centrality_stats(degree_dist(H))

	node degree hist = Counter(degree_dist(H))

	max node degree = max(degree_dist(H))

	edge size list = edge_size_dist(H)

	edge size dist = centrality_stats(edge_size_dist(H))

	edge size hist = Counter(edge_size_dist(H))

	max edge size = max(edge_size_dist(H))

	comp nodes list = s_comp_dist(H, s=1, edges=False)

	comp nodes dist = centrality_stats(s_comp_dist(H, s=1, edges=False))

	comp nodes hist = Counter(s_comp_dist(H, s=1, edges=False))

	comp edges list = s_comp_dist(H, s=1, edges=True)

	comp edges dist = centrality_stats(s_comp_dist(H, s=1, edges=True))

	comp edges hist = Counter(s_comp_dist(H, s=1, edges=True))

	num comps = len(s_comp_dist(H))

	Parameters:

	H (Hypergraph) –

	Returns:

	dist_stats – Dictionary which keeps track of each of the above items (e.g., basic[‘nrows’] = the number of nodes in H)

	Return type:

	dict

	
reports.descriptive_stats.edge_size_dist(H, aggregated=False)

	Computes edge sizes of a hypergraph.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
edge sizes and counts. If aggregated is False, returns a
list of edge sizes in H.

	Returns:

	edge_size_dist – List of edge sizes or dictionary of edge size distribution.

	Return type:

	list or dict

	
reports.descriptive_stats.info(H, node=None, edge=None)

	Print a summary of simple statistics for H

	Parameters:

	
	H (Hypergraph) –

	obj (optional) – either a node or edge uid from the hypergraph

	dictionary (optional) – If True then returns the info as a dictionary rather
than a string
If False (default) returns the info as a string

	Returns:

	info – Returns a string of statistics of the size,
aspect ratio, and density of the hypergraph.
Print the string to see it formatted.

	Return type:

	string

	
reports.descriptive_stats.info_dict(H, node=None, edge=None)

	Create a summary of simple statistics for H

	Parameters:

	
	H (Hypergraph) –

	obj (optional) – either a node or edge uid from the hypergraph

	Returns:

	info_dict – Returns a dictionary of statistics of the size,
aspect ratio, and density of the hypergraph.

	Return type:

	dict

	
reports.descriptive_stats.s_comp_dist(H, s=1, aggregated=False, edges=True, return_singletons=True)

	Computes s-component sizes, counting nodes or edges.

	Parameters:

	
	H (Hypergraph) –

	s (positive integer, default is 1) –

	aggregated – If aggregated is True, returns a dictionary of
s-component sizes and counts in H. If aggregated is
False, returns a list of s-component sizes in H.

	edges – If edges is True, the component size is number of edges.
If edges is False, the component size is number of nodes.

	return_singletons (bool, optional, default=True) –

	Returns:

	s_comp_dist – List of component sizes or dictionary of component size distribution in H

	Return type:

	list or dictionary

See also

comp_dist

	
reports.descriptive_stats.s_edge_diameter_dist(H)

	
	Parameters:

	H (Hypergraph) –

	Returns:

	s_edge_diameter_dist – List of s-edge-diameters for hypergraph H starting with s=1
and going up as long as the hypergraph is s-edge-connected

	Return type:

	list

	
reports.descriptive_stats.s_node_diameter_dist(H)

	
	Parameters:

	H (Hypergraph) –

	Returns:

	s_node_diameter_dist – List of s-node-diameters for hypergraph H starting with s=1
and going up as long as the hypergraph is s-node-connected

	Return type:

	list

	
reports.descriptive_stats.toplex_dist(H, aggregated=False)

	Computes toplex sizes for hypergraph H.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
toplex sizes and counts in H. If aggregated
is False, returns a list of toplex sizes in H.

	Returns:

	toplex_dist – List of toplex sizes or dictionary of toplex size distribution in H

	Return type:

	list or dictionary

Module contents

	
reports.centrality_stats(X)

	Computes basic centrality statistics for X

	Parameters:

	X – an iterable of numbers

	Returns:

	[min, max, mean, median, standard deviation] – List of centrality statistics for X

	Return type:

	list

	
reports.comp_dist(H, aggregated=False)

	Computes component sizes, number of nodes.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
component sizes (number of nodes) and counts. If aggregated
is False, returns a list of components sizes in H.

	Returns:

	comp_dist – List of component sizes or dictionary of component size distribution

	Return type:

	list or dictionary

See also

s_comp_dist

	
reports.degree_dist(H, aggregated=False)

	Computes degrees of nodes of a hypergraph.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
degrees and counts. If aggregated is False, returns a
list of degrees in H.

	Returns:

	degree_dist – List of degrees or dictionary of degree distribution

	Return type:

	list or dict

	
reports.dist_stats(H)

	Computes many basic hypergraph stats and puts them all into a single dictionary object

	nrows = number of nodes (rows in the incidence matrix)

	ncols = number of edges (columns in the incidence matrix)

	aspect ratio = nrows/ncols

	ncells = number of filled cells in incidence matrix

	density = ncells/(nrows*ncols)

	node degree list = degree_dist(H)

	node degree dist = centrality_stats(degree_dist(H))

	node degree hist = Counter(degree_dist(H))

	max node degree = max(degree_dist(H))

	edge size list = edge_size_dist(H)

	edge size dist = centrality_stats(edge_size_dist(H))

	edge size hist = Counter(edge_size_dist(H))

	max edge size = max(edge_size_dist(H))

	comp nodes list = s_comp_dist(H, s=1, edges=False)

	comp nodes dist = centrality_stats(s_comp_dist(H, s=1, edges=False))

	comp nodes hist = Counter(s_comp_dist(H, s=1, edges=False))

	comp edges list = s_comp_dist(H, s=1, edges=True)

	comp edges dist = centrality_stats(s_comp_dist(H, s=1, edges=True))

	comp edges hist = Counter(s_comp_dist(H, s=1, edges=True))

	num comps = len(s_comp_dist(H))

	Parameters:

	H (Hypergraph) –

	Returns:

	dist_stats – Dictionary which keeps track of each of the above items (e.g., basic[‘nrows’] = the number of nodes in H)

	Return type:

	dict

	
reports.edge_size_dist(H, aggregated=False)

	Computes edge sizes of a hypergraph.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
edge sizes and counts. If aggregated is False, returns a
list of edge sizes in H.

	Returns:

	edge_size_dist – List of edge sizes or dictionary of edge size distribution.

	Return type:

	list or dict

	
reports.info(H, node=None, edge=None)

	Print a summary of simple statistics for H

	Parameters:

	
	H (Hypergraph) –

	obj (optional) – either a node or edge uid from the hypergraph

	dictionary (optional) – If True then returns the info as a dictionary rather
than a string
If False (default) returns the info as a string

	Returns:

	info – Returns a string of statistics of the size,
aspect ratio, and density of the hypergraph.
Print the string to see it formatted.

	Return type:

	string

	
reports.info_dict(H, node=None, edge=None)

	Create a summary of simple statistics for H

	Parameters:

	
	H (Hypergraph) –

	obj (optional) – either a node or edge uid from the hypergraph

	Returns:

	info_dict – Returns a dictionary of statistics of the size,
aspect ratio, and density of the hypergraph.

	Return type:

	dict

	
reports.s_comp_dist(H, s=1, aggregated=False, edges=True, return_singletons=True)

	Computes s-component sizes, counting nodes or edges.

	Parameters:

	
	H (Hypergraph) –

	s (positive integer, default is 1) –

	aggregated – If aggregated is True, returns a dictionary of
s-component sizes and counts in H. If aggregated is
False, returns a list of s-component sizes in H.

	edges – If edges is True, the component size is number of edges.
If edges is False, the component size is number of nodes.

	return_singletons (bool, optional, default=True) –

	Returns:

	s_comp_dist – List of component sizes or dictionary of component size distribution in H

	Return type:

	list or dictionary

See also

comp_dist

	
reports.s_edge_diameter_dist(H)

	
	Parameters:

	H (Hypergraph) –

	Returns:

	s_edge_diameter_dist – List of s-edge-diameters for hypergraph H starting with s=1
and going up as long as the hypergraph is s-edge-connected

	Return type:

	list

	
reports.s_node_diameter_dist(H)

	
	Parameters:

	H (Hypergraph) –

	Returns:

	s_node_diameter_dist – List of s-node-diameters for hypergraph H starting with s=1
and going up as long as the hypergraph is s-node-connected

	Return type:

	list

	
reports.toplex_dist(H, aggregated=False)

	Computes toplex sizes for hypergraph H.

	Parameters:

	
	H (Hypergraph) –

	aggregated – If aggregated is True, returns a dictionary of
toplex sizes and counts in H. If aggregated
is False, returns a list of toplex sizes in H.

	Returns:

	toplex_dist – List of toplex sizes or dictionary of toplex size distribution in H

	Return type:

	list or dictionary

 A Gentle Introduction to Hypergraph Mathematics

A Gentle Introduction to Hypergraph Mathematics

Here we gently introduce some of the basic concepts in hypergraph
modeling. We note that in order to maintain this “gentleness”, we will
be mostly avoiding the very important and legitimate issues in the
proper mathematical foundations of hypergraphs and closely related
structures, which can be very complicated. Rather we will be focusing on
only the most common cases used in most real modeling, and call a graph
or hypergraph gentle when they are loopless, simple, finite,
connected, and lacking empty hyperedges, isolated vertices, labels,
weights, or attributes. Additionally, the deep connections between
hypergraphs and other critical mathematical objects like partial orders,
finite topologies, and topological complexes will also be treated
elsewhere. When it comes up, below we will sometimes refer to the added
complexities which would attend if we weren’t being so “gentle”. In
general the reader is referred to [1,2] for a less gentle and more
comprehensive treatment.

Graphs and Hypergraphs

Network science is based on the concept of a graph
\(G=\langle V,E\rangle\) as a system of connections between
entities. \(V\) is a (typically finite) set of elements, nodes, or
objects, which we formally call “vertices”, and \(E\) is a set
of pairs of vertices. Given that, then for two vertices
\(u,v \in V\), an edge is a set \(e=\{u,v\}\) in \(E\),
indicating that there is a connection between \(u\) and \(v\).
It is then common to represent \(G\) as either a Boolean adjacency
matrix \(A_{n \times n}\) where \(n=|V|\), where an
\(i,j\) entry in \(A\) is 1 if \(v_i,v_j\) are connected in
\(G\); or as an incidence matrix \(I_{n \times m}\), where
now also \(m=|E|\), and an \(i,j\) entry in \(I\) is now 1
if the vertex \(v_i\) is in edge \(e_j\).

[image: _images/exgraph.png]

Fig. 1 An example graph, where the numbers are edge IDs.

Table 1 Adjacency matrix \(A\) of a graph.

	
	Andrews

	Bailey

	Carter

	Davis

	Andrews

	0

	1

	1

	1

	Bailey

	1

	0

	1

	0

	Carter

	1

	1

	0

	1

	Davis

	1

	0

	1

	1

Table 2 Incidence matrix \(I\) of a graph.

	
	1

	2

	3

	4

	5

	Andrews

	1

	1

	0

	1

	0

	Bailey

	0

	0

	0

	1

	1

	Carter

	0

	1

	1

	0

	1

	Davis

	1

	0

	1

	0

	0

[image: _images/biblio_hg.png]

Fig. 2 An example hypergraph, where similarly now the hyperedges are shown with numeric IDs.

Table 3 Incidence matrix I of a hypergraph.

	
	1

	2

	3

	4

	5

	Andrews

	1

	1

	0

	1

	0

	Bailey

	0

	0

	0

	1

	1

	Carter

	0

	1

	0

	0

	1

	Davis

	1

	1

	1

	0

	0

Notice that in the incidence matrix \(I\) of a gentle graph
\(G\), it is necessarily the case that every column must have
precisely two 1 entries, reflecting that every edge connects exactly two
vertices. The move to a hypergraph \(H=\langle V,E\rangle\)
relaxes this requirement, in that now a hyperedge (although we will
still say edge when clear from context) \(e \in E\) is a subset
\(e = \{ v_1, v_2, \ldots, v_k\} \subseteq V\) of vertices of
arbitrary size. We call \(e\) a \(k\)-edge when \(|e|=k\).
Note that thereby a 2-edge is a graph edge, while both a singleton
\(e=\{v\}\) and a 3-edge \(e=\{v_1,v_2,v_3\}\), 4-edge
\(e=\{v_1,v_2,v_3,v_4\}\), etc., are all hypergraph edges. In this
way, if every edge in a hypergraph \(H\) happens to be a 2-edge,
then \(H\) is a graph. We call such a hypergraph 2-uniform.

Our incidence matrix \(I\) is now very much like that for a graph,
but the requirement that each column have exactly two 1 entries is
relaxed: the column for edge \(e\) with size \(k\) will have
\(k\) 1’s. Thus \(I\) is now a general Boolean matrix (although
with some restrictions when \(H\) is gentle).

Notice also that in the examples we’re showing in the figures, the graph
is closely related to the hypergraph. In fact, this particular graph is
the 2-section or underlying graph of the hypergraph. It is the
graph \(G\) recorded when only the pairwise connections in the
hypergraph \(H\) are recognized. Note that while the 2-section is
always determined by the hypergraph, and is frequently used as a
simplified representation, it almost never has enough information to be
able to recover the hypergraph from it.

Important Things About Hypergraphs

While all graphs \(G\) are (2-uniform) hypergraphs \(H\), since
they’re very special cases, general hypergraphs have some important
properties which really stand out in distinction, especially to those
already conversant with graphs. The following issues are critical for
hypergraphs, but “disappear” when considering the special case of
2-uniform hypergraphs which are graphs.

All Hypergraphs Come in Dual Pairs

If our incidence matrix \(I\) is a general \(n \times m\)
Boolean matrix, then its transpose \(I^T\) is an \(m \times n\)
Boolean matrix. In fact, \(I^T\) is also the incidence matrix of a
different hypergraph called the dual hypergraph \(H^*\) of
\(H\). In the dual \(H^*\), it’s just that vertices and edges
are swapped: we now have \(H^* = \langle E, V \rangle\) where it’s
\(E\) that is a set of vertices, and the now edges
\(v \in V, v \subseteq E\) are subsets of those vertices.

[image: _images/dual.png]

Fig. 3 The dual hypergraph \(H^*\).

Just like the “primal” hypergraph \(H\) has a 2-section, so does the
dual. This is called the line graph, and it is an important
structure which records all of the incident hyperedges. Line graphs are
also used extensively in graph theory.

Note that it follows that since every graph \(G\) is a (2-uniform)
hypergraph \(H\), so therefore we can form the dual hypergraph
\(G^*\) of \(G\). If a graph \(G\) is a 2-uniform
hypergraph, is its dual \(G^*\) also a 2-uniform hypergraph? In
general, no, only in the case where \(G\) is a single cycle or a
union of cycles would that be true. Also note that in order to calculate
the line graph of a graph \(G\), one needs to work through its dual
hypergraph \(G^*\).

[image: _images/dual2.png]

Fig. 4 The line graph of \(H\), which is the 2-section of the dual \(H^*\).

Edge Intersections Have Size

As we’ve already seen, in a graph all the edges are size 2, whereas in a
hypergarph edges can be arbitrary size \(1, 2, \ldots, n\). Our
example shows a singleton, three “graph edge” pairs, and a 2-edge.

In a gentle graph \(G\) consider two edges
\(e = \{ u, v \},f=\{w,z\} \in E\) and their intersection
\(g = e \cap f\). If \(g \neq \emptyset\) then \(e\) and
\(f\) are non-disjoint, and we call them incident. Let
\(s(e,f)=|g|\) be the size of that intersection. If \(G\) is
gentle and \(e\) and \(f\) are incident, then \(s(e,f)=1\),
in that one of \(u,v\) must be equal to one of \(w,z\), and
\(g\) will be that singleton. But in a hypergraph, the intersection
\(g=e \cap f\) of two incident edges can be any size
\(s(e,f) \in [1,\min(|e|,|f|)]\). This aspect, the size of the
intersection of two incident edges, is critical to understanding
hypergraph structure and properties.

Edges Can Be Nested

While in a gentle graph \(G\) two edges \(e\) and \(f\) can
be incident or not, in a hypergraph \(H\) there’s another case: two
edges \(e\) and \(f\) may be nested or included, in that
\(e \subseteq f\) or \(f \subseteq e\). That’s exactly the
condition above where \(s(e,f) = \min(|e|,|f|)\), which is the size
of the edge included within the including edge. In our example, we have
that edge 1 is included in edge 2 is included in edge 3.

Walks Have Length and Width

A walk is a sequence
\(W = \langle { e_0, e_1, \ldots, e_N } \rangle\) of edges where
each pair \(e_i,e_{i+1}, 0 \le i \le N-1\) in the sequence are
incident. We call \(N\) the length of the walk. Walks are the
raison d’être of both graphs and hypergraphs, in that in a graph
\(G\) a walk \(W\) establishes the connectivity of all the
\(e_i\) to each other, and a way to “travel” between the ends
\(e_0\) and \(e_N\). Naturally in a walk for each such pair we
can also measure the size of the intersection
\(s_i=s(e_i,e_{i+1}), 0 \le i \le N\). While in a gentle graph
\(G\), all the \(s_i=1\), as we’ve seen in a hypergraph
\(H\) all these \(s_i\) can vary widely. So for any walk
\(W\) we can not only talk about its length \(N\), but also
define its width \(s(W) = \min_{0 \le i \le N} s_i\) as the size
of the smallest such intersection. When a walk \(W\) has width
\(s\), we call it an \(s\)-walk. It follows that all walks
in a graph are 1-walks with width 1. In Fig. 5 we see two
walks in a hypergraph. While both have length 2 (counting edgewise, and
recalling origin zero), the one on the left has width 1, and that on the
right width 3.

[image: _images/swalks.png]

Fig. 5 Two hypergraph walks of length 2: (Left) A 1-walk. (Right) A 3-walk.

Towards Less Gentle Things

We close with just brief mentions of more advanced issues.

\(s\)-Walks and Hypernetwork Science

Network science has become a dominant force in data analytics in recent
years, including a range of methods measuring distance, connectivity,
reachability, centrality, modularity, and related things. Most all of
these concepts generalize to hypergraphs using “\(s\)-versions” of
them. For example, the \(s\)-distance between two vertices or
hyperedges is the length of the shortest \(s\)-walk between them, so
that as \(s\) goes up, requiring wider connections, the distance
will also tend to grow, so that ultimately perhaps vertices may not be
\(s\)-reachable at all. See [2] for more details.

Hypergraphs in Mathematics

Hypergraphs are very general objects mathematically, and are deeply
connected to a range of other essential objects and structures mostly in
discrete science.

Most obviously, perhaps, is that there is a one-to-one relationship
between a hypergraph \(H = \langle V, E \rangle\) and a
corresponding bipartite graph \(B=\langle V \sqcup E, I \rangle\).
\(B\) is a new graph (not a hypergraph) with vertices being both the
vertices and the hyperedges from the hypergraph \(H\), and a
connection being a pair \(\{ v, e \} \in I\) if and only if
\(v \in e\) in \(H\). That you can go the other way to define a
hypergraph \(H\) for every bipartite graph \(G\) is evident, but
not all operations carry over unambiguously between hypergraphs and
their bipartite versions.

[image: _images/bicolored1.png]

Fig. 6 Bipartite graph.

Even more generally, the Boolean incidence matrix \(I\) of a
hypergraph \(H\) can be taken as the characteristic matrix of a
binary relation. When \(H\) is gentle this is somewhat restricted,
but in general we can see that there are one-to-one relations now
between hypergraphs, binary relations, as well as bipartite graphs from
above.

Additionally, we know that every hypergraph implies a hierarchical
structure via the fact that for every pair of incident hyperedges either
one is included in the other, or their intersection is included in both.
This creates a partial order, establishing a further one-to-one mapping
to a variety of lattice structures and dual lattice structures relating
how groups of vertices are included in groups of edges, and vice versa.
Fig. refex shows the concept lattice [3], perhaps the most important
of these structures, determined by our example.

[image: _images/ex.png]

Fig. 7 The concept lattice of the example hypergraph \(H\).

Finally, the strength of hypergraphs is their ability to model multi-way
interactions. Similarly, mathematical topology is concerned with how
multi-dimensional objects can be attached to each other, not only in
continuous spaces but also with discrete objects. In fact, a finite
topological space is a special kind of gentle hypergraph closed under
both union and intersection, and there are deep connections between
these structures and the lattices referred to above.

In this context also an abstract simplicial complex (ASC) is a kind
of hypergraph where all possible included edges are present. Each
hypergraph determines such an ASC by “closing it down” by subset. ASCs
have a natural topological structure which can reveal hidden structures
measurable by homology, and are used extensively as the workhorse of
topological methods such as persistent homology. In this way hypergraphs
form a perfect bridge from network science to computational topology in
general.

[image: _images/simplicial.png]

Fig. 8 A diagram of the ASC implied by our example. Numbers here indicate the actual hyper-edges in the original hypergraph \(H\), where now additionally all sub-edges, including singletons, are in the ASC.

Non-Gentle Graphs and Hypergraphs

Above we described our use of “gentle” graphs and hypergraphs as finite,
loopless, simple, connected, and lacking empty hyperedges, isolated
vertices, labels, weights, or attributes. But at a higher level of
generality we can also have:

	Empty Hyperedges:
	If a column of \(I\) has all zero entries.

	Isolated Vertices:
	If a row of \(I\) has all zero entries.

	Multihypergraphs:
	We may choose to allow duplicated hyperedges, resulting in duplicate
columns in the incidence matrix \(I\).

	Self-Loops:
	In a graph allowing an edge to connect to itself.

	Direction:
	In an edge, where some vertices are recognized as “inputs” which
point to others recognized as “outputs”.

	Order:
	In a hyperedge, where the vertices carry a particular (total) order.
In a graph, this is equivalent to being directed, but not in a
hypergraph.

	Attributes:
	In general we use graphs and hypergraphs to model data, and thus
carrying attributes of different types, including weights, labels,
identifiers, types, strings, or really in principle any data object.
These attributes could be on vertices (rows of \(I\)), edges
(columns of \(I\)) or what we call “incidences”, related to a
particular appearnace of a particular vertex in a particular edge
(cells of \(I\)).

[1] Joslyn, Cliff A; Aksoy, Sinan; Callahan, Tiffany J; Hunter, LE;
Jefferson, Brett; Praggastis, Brenda; Purvine, Emilie AH; Tripodi,
Ignacio J: (2021) “Hypernetwork Science: From Multidimensional
Networks to Computational Topology”, in: Unifying Themes in Complex
systems X: Proc. 10th Int. Conf. Complex Systems, ed. D. Braha et
al., pp. 377-392, Springer,
https://doi.org/10.1007/978-3-030-67318-5_25

[2] Aksoy, Sinan G; Joslyn, Cliff A; Marrero, Carlos O; Praggastis, B;
Purvine, Emilie AH: (2020) “Hypernetwork Science via High-Order
Hypergraph Walks”, EPJ Data Science, v. 9:16,
https://doi.org/10.1140/epjds/s13688-020-00231-0

[3] Ganter, Bernhard and Wille, Rudolf: (1999) Formal Concept
Analysis, Springer-Verlag

 Hypergraph Constructors

Hypergraph Constructors

An hnx.Hypergraph H = (V,E) references a pair of disjoint sets:
V = nodes (vertices) and E = (hyper)edges.

HNX allows for multi-edges by distinguishing edges by
their identifiers instead of their contents. For example, if
V = {1,2,3} and E = {e1,e2,e3},
where e1 = {1,2}, e2 = {1,2}, and e3 = {1,2,3},
the edges e1 and e2 contain the same set of nodes and yet
are distinct and are distinguishable within H = (V,E).

HNX provides methods to easily store and
access additional metadata such as cell, edge, and node weights.
Metadata associated with (edge,node) incidences
are referenced as cell_properties.
Metadata associated with a single edge or node is referenced
as its properties.

The fundamental object needed to create a hypergraph is a setsystem. The
setsystem defines the many-to-many relationships between edges and nodes in
the hypergraph. Cell properties for the incidence pairs can be defined within
the setsystem or in a separate pandas.Dataframe or dict.
Edge and node properties are defined with a pandas.DataFrame or dict.

SetSystems

There are five types of setsystems currently accepted by the library.

	iterable of iterables : Barebones hypergraph, which uses Pandas default
indexing to generate hyperedge ids. Elements must be hashable.:

>>> H = Hypergraph([{1,2},{1,2},{1,2,3}])

	dictionary of iterables : The most basic way to express many-to-many
relationships providing edge ids. The elements of the iterables must be
hashable):

>>> H = Hypergraph({'e1':[1,2],'e2':[1,2],'e3':[1,2,3]})

	dictionary of dictionaries : allows cell properties to be assigned
to a specific (edge, node) incidence. This is particularly useful when
there are variable length dictionaries assigned to each pair:

>>> d = {'e1':{ 1: {'w':0.5, 'name': 'related_to'},
>>> 2: {'w':0.1, 'name': 'related_to',
>>> 'startdate': '05.13.2020'}},
>>> 'e2':{ 1: {'w':0.52, 'name': 'owned_by'},
>>> 2: {'w':0.2}},
>>> 'e3':{ 1: {'w':0.5, 'name': 'related_to'},
>>> 2: {'w':0.2, 'name': 'owner_of'},
>>> 3: {'w':1, 'type': 'relationship'}}

>>> H = Hypergraph(d, cell_weight_col='w')

	pandas.DataFrame For large datasets and for datasets with cell
properties it is most efficient to construct a hypergraph directly from
a pandas.DataFrame. Incidence pairs are in the first two columns.
Cell properties shared by all incidence pairs can be placed in their own
column of the dataframe. Variable length dictionaries of cell properties
particular to only some of the incidence pairs may be placed in a single
column of the dataframe. Representing the data above as a dataframe df:

	col1

	col2

	w

	col3

	e1

	1

	0.5

	{‘name’:’related_to’}

	e1

	2

	0.1

	
	{“name”:”related_to”,
	“startdate”:”05.13.2020”}

	e2

	1

	0.52

	{“name”:”owned_by”}

	e2

	2

	0.2

	

	…

	…

	…

	{…}

The first row of the dataframe is used to reference each column.

>>> H = Hypergraph(df,edge_col="col1",node_col="col2",
>>> cell_weight_col="w",misc_cell_properties="col3")

	numpy.ndarray For homogeneous datasets given in a n x 2 ndarray a
pandas dataframe is generated and column names are added from the
edge_col and node_col arguments. Cell properties containing multiple data
types are added with a separate dataframe or dict and passed through the
cell_properties keyword.

>>> arr = np.array([['e1','1'],['e1','2'],
>>> ['e2','1'],['e2','2'],
>>> ['e3','1'],['e3','2'],['e3','3']])
>>> H = hnx.Hypergraph(arr, column_names=['col1','col2'])

Edge and Node Properties

Properties specific to edges and/or node can be passed through the
keywords: edge_properties, node_properties, properties.
Properties may be passed as dataframes or dicts.
The first column or index of the dataframe or keys of the dict keys
correspond to the edge and/or node identifiers.
If properties are specific to an id, they may be stored in a single
object and passed to the properties keyword. For example:

	id

	weight

	properties

	e1

	5.0

	{‘type’:’event’}

	e2

	0.52

	{“name”:”owned_by”}

	…

	…

	{…}

	1

	1.2

	{‘color’:’red’}

	2

	.003

	{‘name’:’Fido’,’color’:’brown’}

	3

	1.0

	{}

A properties dictionary should have the format:

dp = {id1 : {prop1:val1, prop2,val2,...}, id2 : ... }

A properties dataframe may be used for nodes and edges sharing ids
but differing in cell properties by adding a level index using 0
for edges and 1 for nodes:

	level

	id

	weight

	properties

	0

	e1

	5.0

	{‘type’:’event’}

	0

	e2

	0.52

	{“name”:”owned_by”}

	…

	…

	…

	{…}

	1

	1.2

	{‘color’:’red’}

	2

	.003

	{‘name’:’Fido’,’color’:’brown’}

	…

	…

	…

	{…}

Weights

The default key for cell and object weights is “weight”. The default value
is 1. Weights may be assigned and/or a new default prescribed in the
constructor using cell_weight_col and cell_weights for incidence pairs,
and using edge_weight_prop, node_weight_prop, weight_prop,
default_edge_weight, and default_node_weight for node and edge weights.

 Hypernetx-Widget

Hypernetx-Widget

[image: _images/WidgetScreenShot.png]

Overview

The HyperNetXWidget is an addon for HNX, which extends the built-in visualization
capabilities of HNX to a JavaScript based interactive visualization. The tool has two main interfaces,
the hypergraph visualization and the nodes & edges panel.
You may demo the widget here [https://pnnl.github.io/hypernetx-widget/].

The HypernetxWidget is open source and
available on GitHub [https://github.com/pnnl/hypernetx-widget] It is also published on PyPi [https://pypi.org/project/hnxwidget/]

The HyperNetX widget is currently in beta with limitations on the Jupyter environment in which it may be used.
It is being actively worked on. Look for improvements and an expanded list of usable environments in a future release.

Installation

HyperNetXWidget is currently in beta and will only work on Jupyter Notebook 6.5.x. It is not supported on Jupyter Lab,
but support for Jupyter Lab is in planning.

In addition, HyperNetXWidget must be installed using the Anaconda platform [https://www.anaconda.com/] so that the
widget can render on Jupyter notebook.

For users with inexperience with Jupyter and Anaconda, it is highly recommended to use the base environment of Anaconda so
that the widget works seamlessly and out-of-the box on Jupyter Notebook. The widget does not work on Jupyter Lab.

If users want to create a custom environment instead of using the base environment provided by Anaconda, then users
will need to do additional configuration on Jupyter and the kernel to ensure that the widget works.
Specifically, users will need to set the Kernel to use a custom environment. For a guide on how to do this, please
read and follow this guide: How to add your Conda environment to your jupyter notebook in just 4 steps [https://medium.com/@nrk25693/how-to-add-your-conda-environment-to-your-jupyter-notebook-in-just-4-steps-abeab8b8d084].

Do not use python’s built-in venv module or virtualenv to create a virtual environment; the widget will not render on
Jupyter notebook.

Prerequisites

	conda 23.11.x

	python 3.11.x

	jupyter notebook 6.5.4

	ipywidgets 7.6.5

Installation Steps

Open a new shell and run the following commands:

update conda
conda update conda

activate the base environment
conda activate

install hypernetx and hnxwidget
pip install hypernetx hnxwidget

install jupyter notebook and extensions
conda install -y -c anaconda notebook
conda install -y -c conda-forge jupyter_contrib_nbextensions

install and enable the hnxwidget on jupyter
jupyter nbextension install --py --symlink --sys-prefix hnxwidget
jupyter nbextension enable --py --sys-prefix hnxwidget

install ipykernel and use it to add the base environment to jupyter notebook
conda install -y -c anaconda ipykernel
python -m ipykernel install --user --name=base

start the notebook
jupyter-notebook

Conda Environment

If the notebook runs into a ModuleNotFoundError for the HyperNetX or HyperNetXWidget packages, ensure that you set
your kernel to the conda base environment (i.e. base). This will ensure that your notebook has the right environment
to run the widget.

On the notebook, click the “New” drop-down button and select “base” as the environment for your notebook. See the
following screenshot as an example:

[image: _images/notebook_ipykernel.png]

Using the Tool

Layout

The hypergraph visualization is an Euler diagram that shows nodes as circles and hyper edges as outlines
containing the nodes/circles they contain. The visualization uses a force directed optimization to perform
the layout. This algorithm is not perfect and sometimes gives results that the user might want to improve upon.
The visualization allows the user to drag nodes and position them directly at any time. The algorithm will
re-position any nodes that are not specified by the user. Ctrl (Windows) or Command (Mac) clicking a node
will release a pinned node it to be re-positioned by the algorithm.

Selection

Nodes and edges can be selected by clicking them. Nodes and edges can be selected independently of each other,
i.e., it is possible to select an edge without selecting the nodes it contains. Multiple nodes and edges can
be selected, by holding down Shift while clicking. Shift clicking an already selected node will de-select it.
Clicking the background will de-select all nodes and edges. Dragging a selected node will drag all selected
nodes, keeping their relative placement.
Selected nodes can be hidden (having their appearance minimized) or removed completely from the visualization.
Hiding a node or edge will not cause a change in the layout, wheras removing a node or edge will.
The selection can also be expanded. Buttons in the toolbar allow for selecting all nodes contained within selected edges,
and selecting all edges containing any selected nodes.
The toolbar also contains buttons to select all nodes (or edges), un-select all nodes (or edges),
or reverse the selected nodes (or edges). An advanced user might:

	Select all nodes not in an edge by: select an edge, select all nodes in that edge, then reverse the selected nodes to select every node not in that edge.

	Traverse the graph by: selecting a start node, then alternating select all edges containing selected nodes and selecting all nodes within selected edges

	Pin Everything by: hitting the button to select all nodes, then drag any node slightly to activate the pinning for all nodes.

Side Panel

Details on nodes and edges are visible in the side panel. For both nodes and edges, a table shows the node name, degree (or size for edges), its selection state, removed state, and color. These properties can also be controlled directly from this panel. The color of nodes and edges can be set in bulk here as well, for example, coloring by degree.

Other Features

Nodes with identical edge membership can be collapsed into a super node, which can be helpful for larger hypergraphs. Dragging any node in a super node will drag the entire super node. This feature is available as a toggle in the nodes panel.

The hypergraph can also be visualized as a bipartite graph (similar to a traditional node-link diagram). Toggling this feature will preserve the locations of the nodes between the bipartite and the Euler diagrams.

 Modularity and Clustering

Modularity and Clustering

[image: _images/ModularityScreenShot.png]

Overview

The hypergraph_modularity submodule in HNX provides functions to compute hypergraph modularity for a
given partition of the vertices in a hypergraph. In general, higher modularity indicates a better
partitioning of the vertices into dense communities.

Two functions to generate such hypergraph
partitions are provided: Kumar’s algorithm, and the simple last-step refinement algorithm.

The submodule also provides a function to generate the two-section graph for a given hypergraph which can then be used to find
vertex partitions via graph-based algorithms.

Installation

Since it is part of HNX, no extra installation is required.
The submodule can be imported as follows:

import hypernetx.algorithms.hypergraph_modularity as hmod

Using the Tool

Modularity

Given hypergraph HG and a partition A of its vertices, hypergraph modularity is a measure of the quality of this partition.
Random partitions typically yield modularity near zero (it can be negative) while positive modularity is indicative of the presence
of dense communities, or modules. There are several variations for the definition of hypergraph modularity, and the main difference lies in the
weight given to different edges given their size d and purity c. Modularity is computed via:

q = hmod.modularity(HG, A, wdc=hmod.linear)

where the ‘wdc’ parameter points to a function that controls the weights (details below).

In a graph, an edge only links 2 nodes, so given partition A, an edge is either within a community (which increases the modularity)
or between communities. With hypergraphs, we consider edges of size $d=2$ or more. Given some vertex partition A and some d-edge e, let c be the number of nodes
that belong to the most represented part in e; if $c > d/2$, we consider this edge to be within the part.
Hyper-parameters $0 le w(d,c) le 1$ control the weight
given to such edges. Three functions are supplied in this submodule, namely:

	linear
	$w(d,c) = c/d$ if $c > d/2$, else 0.

	majority
	$w(d,c) = 1$ if $c > d/2$, else 0.

	strict
	$w(d,c) = 1$ iff $c = d$, else 0.

The ‘linear’ function is used by default. Other functions $w(d,c)$ can be supplied as long as $0 le w(d,c) le 1$ and $w(d,c)=0$ when $c le d$.
More details can be found in [2].

Two-section graph

There are several good partitioning algorithms for graphs such as the Louvain algorithm, Leiden and ECG, a consensus clustering algorithm.
One way to obtain a partition for hypergraph HG is to build its corresponding two-section graph G and run a graph clustering algorithm.
Code is provided to build such a graph via:

G = hmod.two_section(HG)

which returns an igraph.Graph object.

Clustering Algorithms

Two clustering (vertex partitioning) algorithms are supplied. The first one is a hybrid method proposed by Kumar et al. (see [1])
that uses the Louvain algorithm on the two-section graph, but re-weights the edges according to the distibution of vertices
from each part inside each edge. Given hypergraph HG, this is called as:

K = hmod.kumar(HG)

The other supplied algorithm is a simple method to improve hypergraph modularity directely. Given some
initial partition of the vertices (for example via Louvain on the two-section graph), we move vertices between parts in order
to improve hypergraph modularity. Given hypergraph HG and an initial partition A, it is called as follows:

L = hmod.last_step(HG, A, wdc=linear)

where the ‘wdc’ parameter is the same as in the modularity function.

Other Features

We represent a vertex partition A as a list of sets, but another useful representation is via a dictionary.
We provide two utility functions to switch representation, namely:

A = dict2part(D)
D = part2dict(A)

References

[1] Kumar T., Vaidyanathan S., Ananthapadmanabhan H., Parthasarathy S. and Ravindran B. “A New Measure of Modularity in Hypergraphs: Theoretical Insights and Implications for Effective Clustering”. In: Cherifi H., Gaito S., Mendes J., Moro E., Rocha L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_24

[2] Kamiński B., Prałat P. and Théberge F. “Community Detection Algorithm Using Hypergraph Modularity”. In: Benito R.M., Cherifi C., Cherifi H., Moro E., Rocha L.M., Sales-Pardo M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020. Studies in Computational Intelligence, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-65347-7_13

 Publications

Publications

Joslyn, Cliff A; Aksoy, Sinan; Callahan, Tiffany J; Hunter, LE; Jefferson, Brett; Praggastis, Brenda; Purvine, Emilie AH; Tripodi, Ignacio J: (2021) Hypernetwork Science: From Multidimensional Networks to Computational Topology [https://doi.org/10.1007/978-3-030-67318-5_25], in: `Unifying Themes in Complex systems X: Proc. 10th Int. Conf. Complex Systems*, ed. D. Braha et al., pp. 377-392, Springer, https://doi.org/10.1007/978-3-030-67318-5_25

Aksoy, Sinan G; Joslyn, Cliff A; Marrero, Carlos O; Praggastis, B; Purvine, Emilie AH: (2020) “Hypernetwork Science via High-Order Hypergraph Walks” , EPJ Data Science, v. 9:16,
https://doi.org/10.1140/epjds/s13688-020-00231-0

Aksoy, Sinan G; Hagberg, Aric; Joslyn, Cliff A; Kay, Bill; Purvine, Emilie; Young, Stephen J: (2022) “Models and Methods for Sparse (Hyper)Network Science in Business, Industry, and Government”, Notices of the AMS, v. 69:2, pp. 287-291,
https://doi.org/10.1090/noti2424

Feng, Song; Heath, Emily; Jefferson, Brett; Joslyn, CA; Kvinge, Henry; McDermott, Jason E; Mitchell, Hugh D; Praggastis, Brenda; Eisfeld, Amie J; Sims, Amy C; Thackray, Larissa B; Fan, Shufang; Walters, Kevin B; Halfmann, Peter J; Westhoff-Smith, Danielle; Tan, Qing; Menachery, Vineet D; Sheahan, Timothy P; Cockrell, Adam S; Kocher, Jacob F; Stratton, Kelly G; Heller, Natalie C; Bramer, Lisa M; Diamond, Michael S; Baric, Ralph S; Waters, Katrina M; Kawaoka, Yoshihiro; Purvine, Emilie: (2021) “Hypergraph Models of Biological Networks to Identify Genes Critical to Pathogenic Viral Response”, in: BMC Bioinformatics, v. 22:287,
https://doi.org/10.1186/s12859-021-04197-2

Myers, Audun; Joslyn, Cliff A; Kay, Bill; Purvine, EAH; Roek, Gregory; Shapiro, Madelyn: (2023) “Topological Analysis of Temporal Hypergraphs”, in: Proc. Wshop. on Analysis of the Web Graph (WAW 2023) https://arxiv.org/abs/2302.02857 and
2022 SIAM Conf. on Mathematics of Data Science, https://www.siam.org/Portals/0/Conferences/MDS/MDS22/MDS22_ABSTRACTS.pdf

Joslyn, Cliff A; Aksoy, Sinan; Arendt, Dustin; Firoz, J; Jenkins, Louis; Praggastis, Brenda; Purvine, Emilie AH; Zalewski, Marcin: (2020) “Hypergraph Analytics of Domain Name System Relationships”, in: 17th Wshop. on Algorithms and Models for the Web Graph (WAW 2020), Lecture Notes in Computer Science, v. 12901, ed. Kaminski, B et al., pp. 1-15, Springer,
https://doi.org/10.1007/978-3-030-48478-1_1

Hayashi, Koby; Aksoy, Sinan G; Park, CH; and Park, Haesun: (2020) “Hypergraph Random Walks, Laplacians, and Clustering”, in:Proc. 29th ACM Int. Conf. Information and Knowledge Management (CIKM 2020), pp. 495-504, ACM, New York,**
https://doi.org/10.1145/3340531.3412034

Kay, WW; Aksoy, Sinan G; Baird, Molly; Best, DM; Jenne, Helen; Joslyn, CA; Potvin, CD; Roek, Greg; Seppala, Garrett; Young, Stephen; Purvine, Emilie: (2022) “Hypergraph Topological Features for Autoencoder-Based Intrusion Detection for Cybersecurity Data”, ML4Cyber Wshop., Int. Conf. Machine Learning 2022,
https://icml.cc/Conferences/2022/ScheduleMultitrack?event=13458#collapse20252

Liu, Xu T; Firoz, Jesun; Lumsdaine, Andrew; Joslyn, CA; Aksoy, Sinan; Amburg, Ilya; Praggastis, Brenda; Gebremedhin, Assefaw: (2022) “High-Order Line Graphs of Non-Uniform Hypergraphs: Algorithms, Applications, and Experimental Analysis”, 36th IEEE Int. Parallel and Distributed Processing Symp. (IPDPS 22),
https://ieeexplore.ieee.org/document/9820632

Liu, Xu T; Firoz, Jesun; Lumsdaine, Andrew; Joslyn, CA; Aksoy, Sinan; Praggastis, Brenda; Gebremedhin, Assefaw: (2021) “Parallel Algorithms for Efficient Computation of High-Order Line Graphs of Hypergraphs”, in: 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC 2021),
https://doi.ieeecomputersociety.org/10.1109/HiPC53243.2021.00045

 License

License

HyperNetX

Copyright 2018, 2023, Battelle Memorial Institute

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 Python Module Index

 a |
 c |
 d |
 r

 		 	

 		
 a	

 	[image: -]
 	
 algorithms	

 	
 	
 algorithms.contagion	

 	
 	
 algorithms.generative_models	

 	
 	
 algorithms.homology_mod2	

 	
 	
 algorithms.hypergraph_modularity	

 	
 	
 algorithms.laplacians_clustering	

 	
 	
 algorithms.s_centrality_measures	

 		 	

 		
 c	

 	[image: -]
 	
 classes	

 	
 	
 classes.entityset	

 	
 	
 classes.helpers	

 	
 	
 classes.hypergraph	

 		 	

 		
 d	

 	[image: -]
 	
 drawing	

 	
 	
 drawing.rubber_band	

 	
 	
 drawing.two_column	

 	
 	
 drawing.util	

 		 	

 		
 r	

 	[image: -]
 	
 reports	

 	
 	
 reports.descriptive_stats	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	add_element() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	add_elements_from() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	add_to_column() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	add_to_row() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	adjacency_matrix() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	
 algorithms

 	module

 	
 algorithms.contagion

 	module

 	
 algorithms.generative_models

 	module

 	
 	
 algorithms.homology_mod2

 	module

 	
 algorithms.hypergraph_modularity

 	module

 	
 algorithms.laplacians_clustering

 	module

 	
 algorithms.s_centrality_measures

 	module

 	assign_cell_properties() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	assign_properties() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	assign_weights() (in module classes.helpers)

 	AttrList (class in classes.helpers)

 	auxiliary_matrix() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

B

 	
 	betti() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	betti_numbers() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	bipartite() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	
 	bkMatrix() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	boundary_group() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	build_dataframe_from_entity() (in module classes.entityset)

C

 	
 	cell_properties (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	cell_weights (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	centrality_stats() (in module reports)

 	(in module reports.descriptive_stats)

 	chain_complex() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	children (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	chung_lu_hypergraph() (in module algorithms)

 	(in module algorithms.generative_models)

 	
 classes

 	module

 	
 classes.entityset

 	module

 	
 classes.helpers

 	module

 	
 classes.hypergraph

 	module

 	collapse_edges() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	
 	collapse_identical_elements() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	collapse_nodes() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	collapse_nodes_and_edges() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	collective_contagion() (in module algorithms)

 	(in module algorithms.contagion)

 	comp_dist() (in module reports)

 	(in module reports.descriptive_stats)

 	component_subgraphs() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	components() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	conductance() (in module algorithms.hypergraph_modularity)

 	connected_component_subgraphs() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	connected_components() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	contagion_animation() (in module algorithms)

 	(in module algorithms.contagion)

 	create_dataframe() (in module classes.helpers)

 	create_properties() (in module classes.helpers)

D

 	
 	data (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	dataframe (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	(classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	dcsbm_hypergraph() (in module algorithms)

 	(in module algorithms.generative_models)

 	degree

 	degree() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	degree_dist() (in module reports)

 	(in module reports.descriptive_stats)

 	diameter() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	dict2part() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	dict_depth() (in module classes.helpers)

 	dim() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	dimensions (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	dimsize (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	discrete_SIR() (in module algorithms)

 	(in module algorithms.contagion)

 	
 	discrete_SIS() (in module algorithms)

 	(in module algorithms.contagion)

 	dist_stats() (in module reports)

 	(in module reports.descriptive_stats)

 	distance() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	draw() (in module drawing)

 	(in module drawing.rubber_band)

 	(in module drawing.two_column)

 	draw_hyper_edge_labels() (in module drawing.rubber_band)

 	draw_hyper_edges() (in module drawing.rubber_band)

 	(in module drawing.two_column)

 	draw_hyper_labels() (in module drawing.rubber_band)

 	(in module drawing.two_column)

 	draw_hyper_nodes() (in module drawing.rubber_band)

 	draw_two_column() (in module drawing)

 	
 drawing

 	module

 	
 drawing.rubber_band

 	module

 	
 drawing.two_column

 	module

 	
 drawing.util

 	module

 	dual

 	dual() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

E

 	
 	edge nodes (aka edge elements)

 	edge_adjacency_matrix() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	edge_diameter() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	edge_diameters() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	edge_distance() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	edge_neighbors() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	edge_props (classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	edge_size_dist() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	(in module reports)

 	(in module reports.descriptive_stats)

 	
 	edges (classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	elements (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	elements_by_column() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	elements_by_level() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	empty (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	encode() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	(in module classes.helpers)

 	Entity and Entity set

 	EntitySet (class in classes)

 	(class in classes.entityset)

 	erdos_renyi_hypergraph() (in module algorithms)

 	(in module algorithms.generative_models)

F

 	
 	from_bipartite() (classes.Hypergraph class method)

 	(classes.hypergraph.Hypergraph class method)

 	from_incidence_dataframe() (classes.Hypergraph class method)

 	(classes.hypergraph.Hypergraph class method)

 	
 	from_incidence_matrix() (classes.Hypergraph class method)

 	(classes.hypergraph.Hypergraph class method)

 	from_numpy_array() (classes.Hypergraph class method)

 	(classes.hypergraph.Hypergraph class method)

G

 	
 	get_cell_properties() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	(classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	get_cell_property() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	get_collapsed_size() (in module drawing.util)

 	get_default_radius() (in module drawing.rubber_band)

 	get_frozenset_label() (in module drawing.util)

 	get_line_graph() (in module drawing.util)

 	get_linegraph() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	
 	get_pi() (in module algorithms)

 	(in module algorithms.laplacians_clustering)

 	get_properties() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	(classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	get_property() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	get_set_layering() (in module drawing.util)

 	Gillespie_SIR() (in module algorithms)

 	(in module algorithms.contagion)

 	Gillespie_SIS() (in module algorithms)

 	(in module algorithms.contagion)

H

 	
 	homology_basis() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	hypergraph

 	
 	Hypergraph (class in classes)

 	(class in classes.hypergraph)

 	hypergraph_homology_basis() (in module algorithms)

 	(in module algorithms.homology_mod2)

I

 	
 	incidence

 	incidence matrix

 	incidence_dataframe() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	incidence_dict (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	(classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	incidence_matrix() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	(classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	index() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	indices() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	
 	individual_contagion() (in module algorithms)

 	(in module algorithms.contagion)

 	inflate() (in module drawing.util)

 	inflate_kwargs() (in module drawing.util)

 	info() (in module reports)

 	(in module reports.descriptive_stats)

 	info_dict() (in module reports)

 	(in module reports.descriptive_stats)

 	interpret() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	is_connected() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	is_empty() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	isstatic (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

K

 	
 	kchainbasis() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	
 	kumar() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

L

 	
 	labels (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	last_step() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	layout_hyper_edges() (in module drawing.rubber_band)

 	layout_node_link() (in module drawing.rubber_band)

 	layout_two_column() (in module drawing.two_column)

 	level() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	
 	linear() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	logical_dot() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	logical_matadd() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	logical_matmul() (in module algorithms)

 	(in module algorithms.homology_mod2)

M

 	
 	majority() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	majority_vote() (in module algorithms)

 	(in module algorithms.contagion)

 	matmulreduce() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	memberships (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	merge_nested_dicts() (in module classes.helpers)

 	modularity() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	
 module

 	algorithms

 	algorithms.contagion

 	algorithms.generative_models

 	algorithms.homology_mod2

 	algorithms.hypergraph_modularity

 	algorithms.laplacians_clustering

 	algorithms.s_centrality_measures

 	classes

 	classes.entityset

 	classes.helpers

 	classes.hypergraph

 	drawing

 	drawing.rubber_band

 	drawing.two_column

 	drawing.util

 	reports

 	reports.descriptive_stats

N

 	
 	neighbors() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	node_diameters() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	node_props (classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	nodes (classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	
 	norm_lap() (in module algorithms)

 	(in module algorithms.laplacians_clustering)

 	number_of_edges() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	number_of_nodes() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

O

 	
 	order() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

P

 	
 	part2dict() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	prob_trans() (in module algorithms)

 	(in module algorithms.laplacians_clustering)

 	
 	properties (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	(classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

R

 	
 	reduced_row_echelon_form_mod2() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	remove() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	(classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	remove_edges() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	remove_element() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	remove_elements_from() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	remove_nodes() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	remove_row_duplicates() (in module classes.helpers)

 	
 	remove_singletons() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	
 reports

 	module

 	
 reports.descriptive_stats

 	module

 	restrict_to() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	restrict_to_edges() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	restrict_to_indices() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	restrict_to_levels() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	restrict_to_nodes() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

S

 	
 	s_betweenness_centrality() (in module algorithms)

 	(in module algorithms.s_centrality_measures)

 	s_closeness_centrality() (in module algorithms)

 	(in module algorithms.s_centrality_measures)

 	s_comp_dist() (in module reports)

 	(in module reports.descriptive_stats)

 	s_component_subgraphs() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	s_components() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	s_connected_components() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	s_eccentricity() (in module algorithms)

 	(in module algorithms.s_centrality_measures)

 	s_edge_diameter_dist() (in module reports)

 	(in module reports.descriptive_stats)

 	s_harmonic_centrality() (in module algorithms)

 	(in module algorithms.s_centrality_measures)

 	s_harmonic_closeness_centrality() (in module algorithms)

 	(in module algorithms.s_centrality_measures)

 	s_node_diameter_dist() (in module reports)

 	(in module reports.descriptive_stats)

 	set_cell_property() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	
 	set_property() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	set_state() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	shape (classes.Hypergraph property)

 	(classes.hypergraph.Hypergraph property)

 	simple hypergraph

 	singletons() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	size() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	(classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	smith_normal_form_mod2() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	spec_clus() (in module algorithms)

 	(in module algorithms.laplacians_clustering)

 	strict() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

 	subhypergraph

 	subhypergraph induced by a set of nodes

 	swap_columns() (in module algorithms)

 	(in module algorithms.homology_mod2)

 	swap_rows() (in module algorithms)

 	(in module algorithms.homology_mod2)

T

 	
 	threshold() (in module algorithms)

 	(in module algorithms.contagion)

 	toplex

 	toplex_dist() (in module reports)

 	(in module reports.descriptive_stats)

 	toplexes() (classes.Hypergraph method)

 	(classes.hypergraph.Hypergraph method)

 	
 	translate() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	translate_arr() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	transpose_inflated_kwargs() (in module drawing.util)

 	two_section() (in module algorithms)

 	(in module algorithms.hypergraph_modularity)

U

 	
 	uid (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	uidset (classes.EntitySet property)

 	(classes.entityset.EntitySet property)

 	
 	uidset_by_column() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

 	uidset_by_level() (classes.EntitySet method)

 	(classes.entityset.EntitySet method)

V

 	
 	validate_mapping_for_dataframe() (in module classes.helpers)

_static/file.png

_static/hnx_logo_smaller.png

_images/ModularityScreenShot.png

_images/WidgetScreenShot.png

_static/minus.png

_static/plus.png

_images/dual.png

_images/dual2.png

_images/biblio_hg.png

_images/bicolored1.png

_images/ex.png

_images/exgraph.png

_images/harrypotter_basic_hyp.png
@ Muggle-born or half-blood

@ Part-Goblin

nav.xhtml

 Table of Contents

 		
 HyperNetX (HNX)

 		
 Overview

 		
 HyperNetX

 		
 New Features in Version 2.0

 		
 COLAB Tutorials

 		
 Notice

 		
 License

 		
 Installing HyperNetX

 		
 Installation

 		
 Prerequisites

 		
 Create a virtual environment

 		
 Using Anaconda

 		
 Using venv

 		
 Using virtualenv

 		
 For Windows Users

 		
 Installing Hypernetx

 		
 Installing from PyPi

 		
 Installing from Source

 		
 Post-Installation Actions

 		
 Interact with HyperNetX in a REPL

 		
 Other Actions if installed from source

 		
 Glossary

 		
 S-line graphs

 		
 HyperNetX Packages

 		
 Hypergraphs

 		
 classes package

 		
 Algorithms

 		
 algorithms package

 		
 Drawing

 		
 drawing package

 		
 Reports

 		
 reports package

 		
 A Gentle Introduction to Hypergraph Mathematics

 		
 Graphs and Hypergraphs

 		
 Important Things About Hypergraphs

 		
 All Hypergraphs Come in Dual Pairs

 		
 Edge Intersections Have Size

 		
 Edges Can Be Nested

 		
 Walks Have Length and Width

 		
 Towards Less Gentle Things

 		
 s-Walks and Hypernetwork Science

 		
 Hypergraphs in Mathematics

 		
 Non-Gentle Graphs and Hypergraphs

 		
 Hypergraph Constructors

 		
 SetSystems

 		
 Edge and Node Properties

 		
 Weights

 		
 Visualization Widget

 		
 Overview

 		
 Installation

 		
 Prerequisites

 		
 Installation Steps

 		
 Conda Environment

 		
 Using the Tool

 		
 Layout

 		
 Selection

 		
 Side Panel

 		
